Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction

Lin Yue, Zhihao Zeng, Xujie Ren, Shude Yuan, Chuanqi Xia, Xin Hu, Leihong Zhao, Lvchao Zhuang, Yiming He

PDF(1621 KB)
PDF(1621 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 66. DOI: 10.1007/s11705-024-2424-2
RESEARCH ARTICLE

Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction

Author information +
History +

Abstract

The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency, thus boosting the performance of photocatalysts. This work presents the synthesis and investigation of a novel KNbO3/Bi4O5Br2 heterostructure catalyst for photocatalytic N2–to–NH3 conversion under light illumination. While morphology analysis revealed KNbO3 microcubes embedded within Bi4O5Br2 nanosheets, the composite exhibited no significant improvement in specific surface area or optical property compared to Bi4O5Br2 due to the relatively wide band gap and low surface area of KNbO3. The main contribution lies in the enhanced separation efficiency of photogenerated electrons and holes. Besides, the band structure analysis suggests that KNbO3 and Bi4O5Br2 exhibit suitable band potentials to form a type II heterojunction. Benefiting from the higher Fermi level of KNbO3 than Bi4O5Br2, the electron drift at the contact region thus occurs and leads to the formation of a built-in electric field with the direction from KNbO3 to Bi4O5Br2, accelerating electron migration and improving the operational efficiency of the photocatalysts. Consequently, the KNbO3/Bi4O5Br2 catalyst shows an increased photoactivity, achieving an NH3 generation rate 1.78 and 1.58 times those of KNbO3 and Bi4O5Br2, respectively. This work may offer valuable insights for the design and synthesis of heterojunction composite photocatalysts.

Graphical abstract

Keywords

KNbO3/Bi4O5Br2 / heterojunction / photocatalytic N2 fixation / charge separation

Cite this article

Download citation ▾
Lin Yue, Zhihao Zeng, Xujie Ren, Shude Yuan, Chuanqi Xia, Xin Hu, Leihong Zhao, Lvchao Zhuang, Yiming He. Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction. Front. Chem. Sci. Eng., 2024, 18(6): 66 https://doi.org/10.1007/s11705-024-2424-2

References

[1]
Cherkasov N , Ibhadon A O , Fitzpatrick P . A review of the existing and alternative methods for greener nitrogen fixation. Chemical Engineering and Processing, 2015, 90: 24–33
CrossRef Google scholar
[2]
Liao W R , Qi L , Wang Y L , Qin J Y , Liu G Y , Liang S J , He H Y , Jiang L L . Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance. Advanced Functional Materials, 2021, 31(22): 2009151
CrossRef Google scholar
[3]
Liu D , Yan H P , Lin J W , Lu S W , Xie Y Q , Peng X B , Liang S J , Jiang L L . Regulation of cerium species in Keggin structure of phosphotungstic acid for efficient nitrogen electroreduction to ammonia. Chemical Engineering Science, 2024, 283: 119448
CrossRef Google scholar
[4]
Fang H H , Liu D , Luo Y , Zhou Y L , Liang S J , Wang X Y , Lin B Y , Jiang L L . Challenges and opportunities of Ru-based catalysts toward the synthesis and utilization of ammonia. ACS Catalysis, 2022, 12(7): 3938–3954
CrossRef Google scholar
[5]
Ren T L , Sheng Y W , Wang M Z , Ren K L , Wang L L , Xu Y . Recent advances of Cu-based materials for electrochemical nitrate reduction to ammonia. Chinese Journal of Structural Chemistry, 2022, 41(12): 2212089–2212106
[6]
Chen S , Liu D , Peng T . Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors. Solar RRL, 2021, 5(2): 2000487
CrossRef Google scholar
[7]
Li X J , Zhao C R , Wang J F , Zhang J Y , Wu Y , He Y M . Cu-doped Bi/Bi2WO6 catalysts for efficient N2 fixation by photocatalysis. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1412–1422
CrossRef Google scholar
[8]
Qing X , Yue X P , Feng J Q , Liu J X , Zhang X C , Zhang C M , Wang Y W , Wang Y F , Lv Z P , Li R . . Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 2020, 289: 121470
CrossRef Google scholar
[9]
Di J , Li Y , Zhang Y , Liu Y L , Wang S W , Wu Y , Li H M , Xia J . Layer-contacted graphene-like BN/ultrathin Bi3O4Br stacking for boosting photocatalytic molecular oxygen activation. Transactions of Tianjin University, 2023, 29(3): 235–245
CrossRef Google scholar
[10]
Miao Z R , Wang Q L , Zhang Y F , Meng L P , Wang X X . In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O. Applied Catalysis B: Environmental, 2022, 301: 120802
CrossRef Google scholar
[11]
Zhao C R , Li X J , Yue L , Ren X J , Yuan S D , Zeng Z H , He Y M . Fabrication of novel BiPO4/Bi4O5Br2 heterojunctions for improving photoactivity in N2 fixation and dye degradation. Materials Research Bulletin, 2023, 167: 112377
CrossRef Google scholar
[12]
Chawla A , Sudhaik A , Sonu P , Raizada T , Ahamad Q V , Le V H , Nguyen S , Thakur A K , Mishra R , Selvasembian P . Bi-rich BixOyBrz-based photocatalysts for energy conversion and environmental remediation: a review. Coordination Chemistry Reviews, 2023, 491: 215246
CrossRef Google scholar
[13]
Zhang K F , Chen H X , Pei W B , Dai H X , Li J S , Zhu Y F . Enhanced photocatalytic performance of Bi4O5Br2 with three-dimensionally ordered macroporous structure for phenol removal. Nano Research, 2023, 16(7): 1–11
CrossRef Google scholar
[14]
Chachvalvutikul A , Luangwanta T , Inceesungvorn B , Kaowphong S . Bismuth-rich oxyhalide (Bi7O9I3–Bi4O5Br2) solid-solution photocatalysts for the degradation of phenolic compounds under visible light. Journal of Colloid and Interface Science, 2023, 641: 595–609
CrossRef Google scholar
[15]
VadivelSGnanasekaranLBalasubramanianN. Revealing the charge transfer mechanism in Er ion-doped Bi4O5Br2/g-C3N5 nanocomposite for efficient photocatalytic degradation of antibiotic tetracycline. Carbon Letters, 2023: 1–10
[16]
Wang B , Zhao J Z , Chen H L , Weng Y X , Tang H , Chen Z R , Zhu W S , She Y B , Xia J X , Li H M . Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 293: 120182
CrossRef Google scholar
[17]
Yi F T , Ma J Q , Lin C W , Wang L Y , Zhang H N , Qian Y X , Zhang K F . Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet. Journal of Alloys and Compounds, 2020, 821: 153557
CrossRef Google scholar
[18]
Zhao C R , Li X J , Yue L , Ren X J , Yuan S D , Zeng Z H , Hu X , Wu Y , He Y M . Bi4O5Br2 nanoflower and CdWO4 nanorod heterojunctions for photocatalytic synthesis of ammonia. ACS Applied Nano Materials, 2023, 6(17): 15709–15720
CrossRef Google scholar
[19]
Chen X , Li Y , Wu Z , Xu X , Zhu W , Gao X . Bi4O5Br2 anchored on Ti3C2 MXene with ohmic heterojunction in photocatalytic NH3 production: insights from combined experimental and theoretical calculations. Journal of Colloid and Interface Science, 2021, 602: 553–562
CrossRef Google scholar
[20]
Wang J , Zhao B , Wang C . TiO2/KNbO3 nanocomposite for enhanced humidity sensing performance. Sensors and Actuators. A, Physical, 2023, 349: 114057
CrossRef Google scholar
[21]
Li J , Wang R , Bai Z W , Wang G , Zhang X M , Yuan J S , Zhou J Y , Xie E R , Pan X J . Enhanced performance of photoelectrochemical type ultraviolet photodetector by constructing a KNbO3/ZnO heterojunction. Sensors and Actuators. A, Physical, 2023, 358: 114434
CrossRef Google scholar
[22]
Fisher J G , Thuan U T , Farooq M U , Chandrasekaran G , Jung Y D , Hwang E C , Lee J J , Lakshmanan V K . Prostate cancer cell-specific cytotoxicity of sub-micron potassium niobate powder. Journal of Nanoscience and Nanotechnology, 2018, 18(5): 3141–3147
CrossRef Google scholar
[23]
Zhang H , Huang Y , Li G , Wang G , Fang D , Song Y , Wang J . Preparation of Er3+: Y3Al5O12/WO3-KNbO3 composite and application in treatment of methamphetamine under ultrasonic irradiation. Ultrasonics Sonochemistry, 2017, 35: 478–488
CrossRef Google scholar
[24]
Zhang T T , Zhao K , Yu J G , Jin J , Qi Y , Li H Q , Hou X J , Liu G . Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale, 2013, 5(18): 8375–8383
CrossRef Google scholar
[25]
Huang R , Cai W , Zhang H , Wang Z H , Zhang Q , Gao R L , Chen G , Deng X L , Lei X , Dong J L . . Highly synergistic and polarized KNbO3/WO3 heterojunction for piezo-photocatalytic degradation of organic pollutant. Journal of Environmental Chemical Engineering, 2023, 11(3): 110177
CrossRef Google scholar
[26]
Shi H F , Zhang C L , Zhou C P , Chen G Q . Conversion of CO2 into renewable fuel over Pt-gC3N4/KNbO3 composite photocatalyst. RSC Advances, 2015, 5(113): 93615–93622
CrossRef Google scholar
[27]
Zhang W Q , Xing P X , Zhang J Y , Chen L , Yang J Y , Hu X , Zhao L H , Wu Y , He Y M . Facile preparation of novel nickel sulfide modified KNbO3 heterojunction composite and its enhanced performance in photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2021, 590: 548–560
CrossRef Google scholar
[28]
Xing P X , Zhang W Q , Chen L , Dai X Q , Zhang J Y , Zhao L H , He Y M . Preparation of a NiO/KNbO3 nanocomposite via a photodeposition method and its superior performance in photocatalytic N2 fixation. Sustainable Energy & Fuels, 2020, 4(3): 1112–1117
CrossRef Google scholar
[29]
Li R , Cai Y Y , Liang S Y , Aihemaiti A , Zhang Z T . Improved piezocatalytic activity with Ag2O@KNbO3: mechanisms and performance in organic pollutant degradation. Applied Surface Science, 2024, 644: 158811
CrossRef Google scholar
[30]
Wang C Y , Hu C , Chen F , Li H T , Zhang Y H , Ma T Y , Huang H W . Polar layered bismuth-rich oxyhalide piezoelectrics Bi4O5X2 (X = Br, I): efficient piezocatalytic pure water splitting and interlayer anion-dependent activity. Advanced Functional Materials, 2023, 33(29): 2301144
CrossRef Google scholar
[31]
Chen L , Wang J F , Li X T , Zhang J Y , Zhao C R , Hu X , Lin H J , Zhao L H , Wu Y , He Y M . Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezo-photocatalysis. Green Energy & Environment, 2023, 8(6): 1630–1643
CrossRef Google scholar
[32]
Xing P X , Wu S J , Chen Y J , Chen P F , Hu X , Lin H J , Zhao L H , He Y M . New application and excellent performance of Ag/KNbO3 nanocomposite in photocatalytic NH3 synthesis. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12408–12418
CrossRef Google scholar
[33]
Guo Y Y , Zhang W B , Yang Y N , Wang C . The photocatalytic efficiency enhancement of Bi4O5Br2 by Li-intercalation for NO removal. Journal of Physics and Chemistry of Solids, 2021, 159: 110256
CrossRef Google scholar
[34]
Sun J , Li X , Li J , Mu M , Yin X . Fabrication of Bi4O5Br2-decorated rod-like MOF-derived MoS2 hierarchical heterostructures for boosting photocatalytic CO2 reduction. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2022, 653: 129940
CrossRef Google scholar
[35]
Chen L , Dai X Q , Li X J , Wang J F , Chen H F , Hu X , Lin H J , He Y M , Wu Y , Fan M H . A novel Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(22): 13344–13354
CrossRef Google scholar
[36]
Schabbach L M , Santos B C D , Bortoli L S D , Fredel M C , Henriques B . Application of Kubelka-Munk model on the optical characterization of translucent dental zirconia. Materials Chemistry and Physics, 2021, 258: 123994
CrossRef Google scholar
[37]
Zhang Y , Pan H , Zhang F . Solvothermal synthesis of CDs/Bi4O5Br2 nanocomposites with improved visible-light photocatalytic ciprofloxacin (CIP) decontamination. Materials Letters, 2019, 251: 114–117
CrossRef Google scholar
[38]
Scaife D E . Oxide semiconductors in photoelectrochemical conversion of solar energy. Solar Energy, 1980, 25(1): 41–54
CrossRef Google scholar
[39]
Yuan S D , Wang J F , Zhao C R , Yue L , Ren X J , Zeng Z H , Hu X , Wu Y , He Y M . S-scheme Bi2O3/CdMoO4 hybrid with highly efficient charge separation for photocatalytic N2 fixation and tetracycline degradation: fabrication, catalytic optimization, physicochemical studies. Separation and Purification Technology, 2023, 325: 124665
CrossRef Google scholar
[40]
Ren X J , Wang J F , Yuan S D , Zhao C R , Yue L , Zeng Z H , He Y M . Decoration of CdMoO4 micron polyhedron with Pt nanoparticle and their enhanced photocatalytic performance in N2 fixation and water purification. Frontiers of Chemical Science and Engineering, 2023, 17(12): 1949–1961
CrossRef Google scholar
[41]
Wang Y , Li H , Lin Q Y , Zhao J W , Fang X , Wen N , Zhang Z Z , Ding Z X , Yuan R S , Huang X H , Long J . Nanoscale 0D/1D heterojunction of MAPbBr3/COF toward efficient LED-driven S–S coupling reactions. ACS Catalysis, 2023, 13(23): 15493–15504
CrossRef Google scholar
[42]
Wei Y C , Zhang Q Q , Zhou Y , Ma X F , Wang L L , Wang Y J , Sa R J , Long J L , Fu X Z , Yuan R S . Noble-metal-free plasmonic MoO3‒x-based S-scheme heterojunction for photocatalytic dehydrogenation of benzyl alcohol to storable H2 fuel and benzaldehyde. Chinese Journal of Catalysis, 2022, 43(10): 2665–2677
CrossRef Google scholar
[43]
Su B , Huang H W , Ding Z X , Roeffaers M B J , Wang S B , Long J L . S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. Journal of Materials Science and Technology, 2022, 124: 164–170
CrossRef Google scholar
[44]
Lin M , Luo M L , Liu Y Z , Shen J N , Long J L , Zhang Z Z . 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2023, 50(7): 239–248
CrossRef Google scholar
[45]
Zhao J W , Liu F K , Wang W J , Wang Y , Wen N , Zhang Z Z , Dai W X , Yuan R S , Ding Z X , Long J L . S-scheme-heterojunction LaNiO3/CdLa2S4 photocatalyst for solar-driven CO2-to-CO conversion. ACS Applied Nano Materials, 2023, 6(10): 8927–8936
CrossRef Google scholar
[46]
Ray A , Sultana S , Tripathy S P , Parida K . Aggrandizing the photoactivity of ZnO nanorods toward N2 reduction and H2 evolution through facile in situ coupling with NixPy. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6305–6317
CrossRef Google scholar
[47]
ZhaoY XShiRBianX NZhouCZhaoY FZhangSWuFWaterhouseG I NWuL ZTungC H, . Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Advanced Science, 2019, 6(8): 1802109
[48]
Gao X , Wen Y J , Qu D , An L , Luan S L , Jiang W S , Zong X P , Liu X Y , Sun Z C . Interference effect of alcohol on Nessler’s reagent in photocatalytic nitrogen fixation. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5342–5348
CrossRef Google scholar
[49]
ZhaoC RYueLYuanS DRenX JZengZ HHuXZhaoL HWuYHeY M. Enhanced photocatalytic N2 fixation and water purification using Bi/ZnSnO3 composite: mechanistic insights and novel applications. Journal of Industrial and Engineering Chemistry, 2024
[50]
Zhang L L , Ding L X , Chen G F , Yang X F , Wang H H . Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgement

The work was financially supported by the National Natural Science Foundation of China (Grant No. 22172144) and the Key Research and Development Program of Zhejiang Province (Grant No. 2023C03148).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2424-2 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1621 KB)

Accesses

Citations

Detail

Sections
Recommended

/