Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization for water purification

Xiao Yong , Pengfei Sha , Jinghui Peng , Mengdi Liu , Qian Zhang , Jianhua Yu , Liyan Yu , Lifeng Dong

Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (12) : 2014 -2024.

PDF (4588KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (12) : 2014 -2024. DOI: 10.1007/s11705-023-2346-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization for water purification

Author information +
History +
PDF (4588KB)

Abstract

Capacitive deionization can alleviate water shortage and water environmental pollution, but performances are greatly determined by the electrochemical and desalination properties of its electrode materials. In this work, B and N co-doped porous carbon with micro-mesoporous structures is derived from sodium alginate by a carbonization, activation, and hydrothermal doping process, which exhibits large specific surface area (2587 m2·g‒1) and high specific capacitance (190.7 F·g‒1) for adsorption of salt ions and heavy metal ions. Furthermore, the materials provide a desalination capacity of 26.9 mg·g−1 at 1.2 V in 500 mg·L‒1 NaCl solution as well as a high removal capacity (239.6 mg·g‒1) and adsorption rate (7.99 mg·g‒1·min‒1) for Pb2+ with an excellent cycle stability. This work can pave the way to design low-cost porous carbon with high-performances for removal of salt ions and heavy metal ions.

Graphical abstract

Keywords

capacitance deionization / porous carbon / B/N co-doping / heavy metal ions / water purification

Cite this article

Download citation ▾
Xiao Yong, Pengfei Sha, Jinghui Peng, Mengdi Liu, Qian Zhang, Jianhua Yu, Liyan Yu, Lifeng Dong. Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization for water purification. Front. Chem. Sci. Eng., 2023, 17(12): 2014-2024 DOI:10.1007/s11705-023-2346-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y, Wang Y, Xue J, Tang C. MnO2-coated graphene/polypyrrole hybrids for enhanced capacitive deionization performance of Cu2+ removal. Industrial & Engineering Chemistry Research, 2022, 61(10): 3582–3590

[2]

Dong Y, Xing W, Luo K, Zhang J, Yu J, Jin W, Wang J, Tang W. Effective and continuous removal of Cr(VI) from brackish wastewater by flow-electrode capacitive deionization (FCDI). Journal of Cleaner Production, 2021, 326: 129417

[3]

Wang R, Xu B, Chen Y, Yin X, Liu Y, Yang W. Electro-enhanced adsorption of lead ions from slightly-polluted water by capacitive deionization. Separation and Purification Technology, 2022, 282: 120122

[4]

He M, Zong M, Zhang P, Huo S, Zhang X, Song X, Li K. Hierarchical N-doped porous 3D network electrode with enhanced capacitive deionization performance. Separation and Purification Technology, 2022, 297: 121558

[5]

Ye Z, Wang F, Jia C, Mu K, Yu M, Lv Y, Shao Z. Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chemical Engineering Journal, 2017, 330: 1166–1173

[6]

Kim M, Xu X, Xin R, Earnshaw J, Ashok A, Kim J, Park T, Nanjundan A K, El-Said W A, Yi J W, Na J, Yamauchi Y. KOH-activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Applied Materials & Interfaces, 2021, 13(44): 52034–52043

[7]

Kim M, Firestein K L, Fernando J F S, Xu X, Lim H, Golberg D V, Na J, Kim J, Nara H, Tang J, Yamauchi Y. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chemical Science, 2022, 13(36): 10836–10845

[8]

Kim M, Wang C, Earnshaw J, Park T, Amirilian N, Ashok A, Na J, Han M, Rowan A E, Li J, Yi J W, Yamauchi Y. Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(45): 24056–24063

[9]

Xu L, Ding Z, Chen Y, Xu X, Liu Y, Li J, Lu T, Pan L. Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization. Journal of Colloid and Interface Science, 2023, 630: 372–381

[10]

Liu Y, Zhang Y, Zhang Y, Zhang Q, Gao X, Dou X, Zhu H, Yuan X, Pan L. MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(3): 1443–1450

[11]

Wang K, Liu Y, Xu X, Jiao Y, Pan L. In situ synthesis of ultrasmall NaTi2(PO4)3 nanocube decorated carbon nanofiber network enables ultrafast and superstable rocking-chair capacitive deionization. Chemical Engineering Journal, 2023, 463: 142394

[12]

Chen Z, Ding Z, Chen Y, Xu X, Liu Y, Lu T, Pan L. Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate on MXene nano-stacking for high-performance capacitive deionization. Chemical Engineering Journal, 2023, 452: 139451

[13]

Li Z, Mao S, Yang Y, Sun Z, Zhao R. Controllable synthesis of a hollow core-shell Co-Fe layered double hydroxide derived from Co-MOF and its application in capacitive deionization. Journal of Colloid and Interface Science, 2021, 585: 85–94

[14]

Elisadiki J, Kibona T E, Machunda R L, Saleem M W, Kim W S, Jande Y A C. Biomass-based carbon electrode materials for capacitive deionization: a review. Biomass Conversion and Biorefinery, 2020, 10(4): 1327–1356

[15]

Shang Z, An X, Zhang H, Shen M, Baker F, Liu Y, Liu L, Yang J, Cao H, Xu Q, Liu H, Ni Y. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon, 2020, 161: 62–70

[16]

Liu Y, Geng B, Zhang Y, Gao X, Du X, Dou X, Zhu H, Yuan X. MnO2 decorated porous carbon derived from Enteromorpha prolifera as flow-through electrode for dual-mode capacitive deionization. Desalination, 2021, 504: 114977

[17]

Liu L, Lu Y, Qiu D, Wang D, Ding Y, Wang G, Liang Z, Shen Z, Li A, Chen X, Song H. Sodium alginate-derived porous carbon: self-template carbonization mechanism and application in capacitive energy storage. Journal of Colloid and Interface Science, 2022, 620: 284–292

[18]

Yang W, Yang W, Kong L, Song A, Qin X, Shao G. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon, 2018, 127: 557–567

[19]

Wang S, Chen D, Zhang Z X, Hu Y, Quan H. Mesopore dominated capacitive deionization of N-doped hierarchically porous carbon for water purification. Separation and Purification Technology, 2022, 290: 120912

[20]

Ding Z, Xu X, Li J, Li Y, Wang K, Lu T, Hossain M S A, Amin M A, Zhang S, Pan L, Yamauchi Y. Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chemical Engineering Journal, 2022, 430: 133161

[21]

Luo L, Zhou Y, Yan W, Wu X, Wang S, Zhao W. Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application. Electrochimica Acta, 2020, 360: 137010

[22]

Qiu S, Chen Z, Zhuo H, Hu Y, Liu Q, Peng X, Zhong L. Using FeCl3 as a solvent, template, and activator to prepare B, N co-doping porous carbon with excellent supercapacitance. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15983–15994

[23]

Yang F, Cao S, Tang Y, Yin K, Gao Y, Pang H. HCl-activated porous nitrogen-doped carbon nanopolyhedras with abundant hierarchical pores for ultrafast desalination. Journal of Colloid and Interface Science, 2022, 628: 236–246

[24]

Xie Z, Shang X, Yang J, Hu B, Nie P, Jiang W, Liu J. 3D interconnected boron- and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization. Carbon, 2020, 158: 184–192

[25]

Zheng S M, Yuan Z H, Dionysiou D D, Zhong L B, Zhao F, Yang J C E, Zheng Y M. Silkworm cocoon waste-derived nitrogen-doped hierarchical porous carbon as robust electrode materials for efficient capacitive desalination. Chemical Engineering Journal, 2023, 458: 141471

[26]

Zhang W, Jin C, Shi Z, Zhu L, Chen L, Liu Y, Zhang H. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization. Chemosphere, 2022, 291: 133113

[27]

Lian Y, Liu L, Bao H, Cao Z, Sun J, Zhao J, Zhang H. Noncorrosive and nonpolluting synthesis of biomass-derived nanosheets with B, N Codoping. ACS Applied Energy Materials, 2022, 5(7): 8885–8891

[28]

Chu M, Tian W, Zhao J, Zou M, Lu Z, Zhang D, Jiang J. A comprehensive review of capacitive deionization technology with biochar-based electrodes: biochar-based electrode preparation, deionization mechanism and applications. Chemosphere, 2022, 307: 136024

[29]

Zhou Y, Ren J, Xia L, Zheng Q, Liao J, Long E, Xie F, Xu C, Lin D. Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance supercapacitor. Electrochimica Acta, 2018, 284: 336–345

[30]

Song X, Fang D, Huo S, Li K. 3D-ordered honeycomb-like nitrogen-doped micro-mesoporous carbon for brackish water desalination using capacitive deionization. Environmental Science. Nano, 2021, 8(8): 2191–2203

[31]

Guo D, Ding B, Hu X, Wang Y, Han F, Wu X. Synthesis of boron and nitrogen codoped porous carbon foam for high performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11441–11449

[32]

Zhang H, Wang C, Zhang W, Zhang M, Qi J, Qian J, Sun X, Yuliarto B, Na J, Park T, Gomaa H G A, Kaneti Y V, Yi J W, Yamauchi Y, Li J. Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(21): 12807–12817

[33]

He R, Neupane M, Zia A, Huang X, Bowers C, Wang M, Lu J, Yang Y, Dong P. Binder-free wood converted carbon for enhanced water desalination performance. Advanced Functional Materials, 2022, 32(49): 2208040

[34]

Wu N, Gu X, Zhou S, Han X, Leng H, Zhang P, Yang P, Qi Y, Li S, Qiu J. Hierarchical porous N, S co-doped carbon derived from fish scales for enhanced membrane capacitive deionization. Electrochimica Acta, 2022, 409: 139983

[35]

Yasin A S, Mohamed I M A, Mousa H M, Park C H, Kim C S. Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Scientific Reports, 2018, 8(1): 541

[36]

Zhang H, Tian J, Cui X, Li J, Zhu Z. Highly mesoporous carbon nanofiber electrodes with ultrahigh specific surface area for efficient capacitive deionization. Carbon, 2023, 201: 920–929

[37]

Zhang P, Fritz P A, Schroen K, Duan H, Boom R M, Chan-Park M B. Zwitterionic polymer modified porous carbon for high-performance and antifouling capacitive desalination. ACS Applied Materials & Interfaces, 2018, 10(39): 33564–33573

[38]

Shi M, Hong X, Liu C, Qiang H, Wang F, Xia M. Green double organic salt activation strategy for one-step synthesis of N-doped 3D hierarchical porous carbon for capacitive deionization. Chemical Engineering Journal, 2023, 453: 139764

[39]

Suss M E, Porada S, Sun X, Biesheuvel P M, Yoon J, Presser V. Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy & Environmental Science, 2015, 8(8): 2296–2319

[40]

Lu T, Liu Y, Xu X, Pan L, Alothman A A, Shapter J, Wang Y, Yamauchi Y. Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Separation and Purification Technology, 2021, 256: 117771

[41]

Liu X, Liu H, Mi M, Kong W, Ge Y, Hu J. Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Separation and Purification Technology, 2019, 224: 44–50

[42]

Li Y, Liu Y, Wang M, Xu X, Lu T, Sun C Q, Pan L. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon, 2018, 130: 377–383

[43]

Xing W, Zhang M, Liang J, Tang W, Li P, Luo Y, Tang N, Guo J. Facile synthesis of pinecone biomass-derived phosphorus-doping porous carbon electrodes for efficient electrochemical salt removal. Separation and Purification Technology, 2020, 251: 117357

[44]

Cao Z, Hu S, Yu J, Wang L, Yang Q, Song H, Zhang S. Enhanced capacitive deionization of toxic metal ions using nanoporous walnut shell-derived carbon. Journal of Environmental Chemical Engineering, 2022, 10(5): 108245

[45]

Kyaw H H, Myint M T Z, AlHarthi S, AlAbri M. Removal of heavy metal ions by capacitive deionization: effect of surface modification on ions adsorption. Journal of Hazardous Materials, 2020, 385: 121565

[46]

Bharath G, Hai A, Rambabu K, Ahmed F, Haidyrah A S, Ahmad N, Hasan S W, Banat F. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon. Environmental Research, 2021, 197: 111110

[47]

Liu D, Xu S, Cai Y, Wang Y, Guo J, Li Y. A coupling technology of capacitive deionization and carbon-supported petal-like VS2 composite for effective and selective adsorption of lead(II) ions. Journal of Electroanalytical Chemistry, 2022, 910: 116152

[48]

Li Y, Xu R, Qiao L, Li Y, Wang D, Li D, Liang X, Xu G, Gao M, Gong H, Zhang X, Qiu H, Liang K, Chen P, Li Y. Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization. Microporous and Mesoporous Materials, 2022, 338: 111889

[49]

Xu B, Wang R, Fan Y, Li B, Zhang J, Peng F, Du Y, Yang W. Flexible self-supporting electrode for high removal performance of arsenic by capacitive deionization. Separation and Purification Technology, 2022, 299: 121732

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4588KB)

Supplementary files

FCE-23025-OF-YX_suppl_1

2722

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/