Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition

Houjun Zhang, Fang Chen, Jipeng Xu, Jinli Zhang, You Han

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 886-896.

PDF(4029 KB)
Front. Chem. Sci. Eng. All Journals
PDF(4029 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 886-896. DOI: 10.1007/s11705-021-2125-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition

Author information +
History +

Abstract

Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of Fe2O3 catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of Fe2O3, the surface lattice oxygen is consumed by small carbon fragments to produce CO and CO2, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C–S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with Fe2O3 catalyst, helped accelerate the degradation of asphaltenes.

Graphical abstract

Keywords

oily sludge / SCWG / ReaxFF / Fe2O3 / heteroatoms

Cite this article

Download citation ▾
Houjun Zhang, Fang Chen, Jipeng Xu, Jinli Zhang, You Han. Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition. Front. Chem. Sci. Eng., 2022, 16(6): 886‒896 https://doi.org/10.1007/s11705-021-2125-z

1 Stability of soap bubbles

Soap bubbles are small gas pockets enclosed by liquid films in an air environment. They are commonly seen in children’s play and artistic performances. They are also building blocks that constitute foams, which are ubiquitous in our daily life and industrial processes ranging from foods, cosmetics and medicines to mining. Studying the behaviors of bubbles is crucial for these foam manufacturing industrial processes; their varied behaviors also attract the attention of researchers [1,2]. For instance, bubble films tend to minimize their surface area under given boundary conditions; thus, they are representative experimental models of minimal surfaces for verifying complex mathematical problems involving minimal optimization [3,4].
Soap bubbles are thought to be fragile and transient, and their rupture is related to viscous surface tension as well as Marangoni and nuclei effects depending on the composition of the bubble shell and the surrounding environment [1,3]. Without any stabilizers, the bursting of bare bubbles is primarily caused by the gravity-induced drainage of the liquid film, the thickness h of which follows the dynamics [5] h=h0exp(t/τ), where τ is the characteristic time of drainage scaling as η/ρgR, h0 denotes the initial film thickness, η is the liquid viscosity, ρ is the liquid density, and R is the bubble radius, respectively. When the bubble surface is thinned to a critical value, normally on the order of tens of nanometers, long-range van der Waals interactions accelerate the thinning process, and the bursting of bubbles consequently occurs [5]. Increasing the liquid viscosity of the liquid film can prevent film drainage and prolong the lifetime of bubbles [6]. However, bare viscous bubbles are still transient and can only last seconds. By adding surfactants to the bubble shell, surfactant molecules can induce the Marangoni effect on the surface or even immobilize surface boundaries [7], which significantly prevents film drainage and can promote bubble life to minutes. Even so, surfactant-stabilized bubbles eventually rupture due to liquid evaporation and/or the nucleation of holes caused by dust in the surrounding environment. In a dustless, vibration-free environment with saturated vapor atmospheres to suppress the nuclei and to prevent the evaporation of liquid, a bare viscous bubble can reach a lifetime as long as 2 years [5]. However, in a normal environment, overcoming film drainage, evaporation, and nuclei effects and achieving a long bubble lifetime are challenging tasks [8].

2 Particulate interfaces: particle-covered droplets in liquid, particle-covered bubbles in liquid and particle-covered droplets in air

Since Ramsden [9] and Pickering [10] found a century ago that particles are surface reactive and can therefore adsorb onto interfaces, particles have been intensively used as particulate agents to stabilize multiphase interfaces similar to surfactant molecules (Fig.1). For instance, particles can occupy the interface of immiscible liquids, stabilizing either water-in-oil or oil-in-water emulsions [1115], as shown in Fig.1(a)–(c). These particle-stabilized emulsions are called Pickering emulsions [16], named after S.U. Pickering, who discovered them in 1907 [10]. In addition, particles can absorb on the liquid−air interface and thus serve as stabilizers for air bubbles in liquid, forming particle-covered bubbles in a liquid environment, which are also known as “armored bubbles” [1723] (Fig.1(d–g)). This can also coat liquid droplets in air, forming particle-covered droplets termed “liquid marbles” [2430]. Particles can even hang onto interfaces with ultralow interfacial tensions, such as in the interface of aqueous two-phase systems. The two immiscible aqueous phases are formed by phase separation in an aqueous solution dissolved with polymers, biomolecules and salts [3133]. Recent works have revealed that protein particles [34] and fibrils [35,36] can effectively stabilize aqueous-in-aqueous emulsions.
Fig.1 (a) Schematics of a Pickering emulsion. (b) Asymmetric Janus Pickering emulsions through particle jamming of coalesced emulsions. The scale bar is 500 μm. Reproduced with permission from Ref. [15], copyright 2014, Springer Nature. (c) The deformation and stability of Pickering emulsions in an electric field. The scale bar is 300 μm. Reproduced with permission from Ref. [11], copyright 2013, The American Association for the Advancement of Science. (d) Schematics of an armored bubble. (e) Optic images of a spherical armored bubble. The scale bar is 400 μm. Reproduced with permission from Ref. [18], copyright 2006, American Chemical Society. (f) Two floating armored bubbles do not coalesce due to particle stabilization. The scale bar is 200 μm. Reproduced with permission from Ref. [37], copyright 2020 Elsevier. (g) Nonspherical armored bubbles with various shapes [18]. The scale bar is 200 μm. (h) Schematics of a liquid marble. (i) Photographs of liquid marbles encapsulating various chemical solutions. The scale bar is 2 mm. Reproduced with permission from Ref. [38], copyright 2019, Wiley-VCH. (j) SEM image of a dried polyhedral liquid marble stabilized by hexagonal fluorinated PET plates. The scale bar is 200 μm. Reproduced with permission from Ref. [39], copyright 2019, Wiley-VCH. (k) Complex particle-stabilized liquid/air surfaces forming a complex structure representing a Chinese dragon symbol. The scale bar is 10 cm. Reproduced with permission from Ref. [40], copyright 2018, Wiley-VCH.

Full size|PPT slide

The accumulation of particles on the interface is driven by the minimization of the total surface energy of the system [13,41,42]. For instance, the spherical particle straddled at the immiscible interface has an adsorption energy of ΔG=πa2γ(1|cosθ|)2, where a denotes the radius of the colloidal particle, γ indicates the interfacial tension, and θ is the contact angle at the interface [41]. For particles with nonspherical shapes, such as rod-like particles and disk-like particles, the adsorption energies at the fluid surface are even larger than those with spherical particles of the same volume, thereby strengthening their attachment to fluid interfaces [39,41,43]. For most particle-laden interfaces, the adsorption energy of particles is several orders higher than the thermal energy kT, with k and T being the Boltzmann constant and the temperature, respectively. As a result, the adsorption of particles at interfaces is irreversible, which differs from surfactant molecules that constantly adsorb and desorb. More interestingly, Janus particles that have two distinct surface regions with opposite chemical compositions and wetting properties are considerably more effective than homogeneous particles in stabilizing multiphase interfaces [4447].

3 Gas marbles: a recently discovered particle-covered bubble in air

Particulate materials, such as fat globules and protein aggregates, have been applied extensively for stabilizing foams in the food industry [2,41]. Most studies have focused on the collective behaviors of foams against coalescence and flocculation, which are crucial for the quality and shelf life of foam-based food products. In comparison, research on the individual behavior of particle-stabilized bubbles has been inadequate. Recently, a compact monolayer of microparticles has been demonstrated to straddle on air/liquid/air interfaces and stabilize a single bubble, forming a new soft object called a “gas marble” [8,48,49], as shown in Fig.2. A gas marble consists of gas coated by a layer of particles that entrap a liquid thin film exposed to the atmosphere, as shown in Fig.2(a,b). Although the states of their constituent phases are different, the appearance of a gas marble is similar to that of a liquid marble. Importantly, the delimiting particle armor in liquid marble straddles at the single-layer liquid−gas interface, while that in gas marble straddles at the bilayer liquid−gas interfaces, as shown inFig.2(a).
Fig.2 (a) Schematic of a gas marble. Insert illustrating the cross-section of the gas marble shell and the layout of particles on the marble surface. (b) Optical image of a gas marble. The fluorescent picture demonstrates the enlargement of the particle layout. (c) Comparison of mechanical stability among gas marbles, liquid marbles and armored marbles at different sizes of bubbles and drops (Db). Both the critical overpressures (ΔP+) and underpressures (ΔP+) are normalized by capillary pressure (ΔPcap) to make a fair comparison. Reproduced with permission from Ref. [45], copyright 2017, American Physicsal Society.

Full size|PPT slide

Compared to soap bubbles, a gas marble with particle-entrapping liquid film has significantly higher robustness [48]. The mechanical stability of a gas marble can be characterized by measuring the pressure difference ΔP = PbPatm that causes bursting, where Pb and Patm denote the inner pressure of the gas marble and the atmospheric pressure, respectively. There are two scenarios in which a gas marble can rupture: overpressure ΔP+ > 0 when the gas marble undergoes an inflation test, and underpressure Δ P < 0 while a gas marble is in the deflation process. It has been found that particulate bubbles can sustain both overpressures and underpressures with amplitudes ~10 times greater than the Laplace pressure, Δ Pcap = 4γ/Rb (a gas marble has two liquid/air interfaces), which suggests that the particle monolayer at the thin liquid film dramatically improves the stability of bubbles [48]. The outstanding mechanical strength is attributed to the strong cohesive nature of the particle-assembled shell on the bubble surface. More interestingly, the normalized pressures ΔP+Pcap and ΔPPcap of a gas marble are much larger than those of liquid marbles and armored bubbles [23,50], as shown in Fig.2(c). The significant differences in underpressures between gas marbles and liquid marbles come from the capacity of gas marbles to resist fluid loading up to 10 times the Laplace pressure of corresponding bare bubbles, whereas liquid marbles do not possess any strength for such a solicitation mode [48].

4 Gas marbles represent ultra-long-lasting bubbles in the atmospheric environment

Gas marbles are more robust than bubbles, liquid marbles and armored bubbles underwater [48]. Do they have a longer life than bubbles with no particles? A recent work demonstrated that particle-stabilized bubbles can maintain their integrity for more than 1 year in a standard atmosphere [8]. The ultra-long-lasting bubble is a gas marble featuring a particle-entrapping thin film of glycol aqueous solution. Its long life is attributed to the conduction of film drainage, liquid evaporation and gas diffusion, which accounts for the otherwise transient and fragile nature of bare bubbles. First, the particle shell can slow the drainage of the film through wetting forces. These partial-wetting particles adsorb on the two liquid interfaces, forming a monolayer through cohesive attractions. This monolayer traps the liquid by capillarity, makes the liquid passages constricted and tortuous, and thus significantly hinders the overall drainage within the thin film [41]. Second, the particles on the film can reduce the area of the surface across which gas diffuses, thus making the particulate film less permeable to gas than their pure liquid counterparts. The low gas permeability of the film slows the aging of gas marbles since evaporation is inhibited [49]. For instance, a normal water soap bubble (Rb = 3.7 mm) could burst within 1 min because of evaporation. When coated with the particles, the lifetime of a water bubble with an identical radius can be prolonged to 9 min, as shown in Fig.3(a). The phenomenon wherein particulate film reduces evaporation also exists in liquid marbles. It has also been suggested that the higher the surface coverage is, the lower the evaporation rate [51]. Last but not least, to further slow the evaporation and make the bubble longer lasting, a mixture of water and glycerol can be formulated to generate a gas marble (Fig.3). Glycerol has a strong affinity for water molecules due to its rich hydroxyl groups. Thus, the glycerol within the particulate film of bubble can absorb water molecules contained in air, which compensates for water evaporation and enhances bubble stability (Fig.3(a)). In a gas marble, adsorption and evaporation of water can be balanced, and the resultant marble can be further stabilized by optimizing the glycerol mass ratio and relative humidity, as summarized in the phase diagram shown in Fig.3(b) [8].
Fig.3 (a) Morphology and lifetimes of different marbles: soap water bubble, water gas marble and water/glycerol gas marble. The water/glycerol gas marble has the longest lifetime, which maintains its morphology after 9 months. (b) Phase diagram of different regimes of gas marble depending on the initial glycerol mass ratio and the relative humidity. Reproduced with permission from Ref. [8], copyright 2022, American Physical Society.

Full size|PPT slide

5 Perspectives of gas marbles

Recent progress in particle-stabilized bubble with ultra-robustness and ultra-long-lasting life not only extends our understanding of particulate-stabilized interfaces but could also have important implications for applications. Gas marbles can inspire the design and fabrication of novel materials. For instance, highly robust bubbles could inspire new strategies for foam stabilization, which is crucial for developing foam-based materials or products [1,2,23]. By inhibiting the coalescence of foams on the level of a single bubble, well-controlled aerated materials can also be designed. Additionally, particulate-stabilized bubbles with high mechanical strength and long life can be exploited as gas storage materials. By designing the film composition and inhibiting the gas permittivity, valuable or polluted gases can be encapsulated inside the bubbles with insignificant gas diffusion/exchange with the environment.
Gas marbles can also be utilized as a new type of confined microreactor. For instance, we can use gas marbles for miniaturized reactions between interior and exterior gases. By tuning the film composition, we can control the permittivity of gas marbles and explore the reaction dynamics of the two gases. In addition, the thin film of gas marbles can be the confinement where miniaturized liquid/gas reactions with high efficiency take place. The thin film of gas marbles possesses an ultrahigh surface-to-volume ratio: S/V ~1/h, where h is the thickness of the film. With its unique properties, this new soft object, the gas marble, could open new possibilities both for a fundamental understanding of particle-laden interfaces as well as for the development of novel bubble-based materials and novel microreactors.

References

[1]
Gao N, Li J, Quan C, Tan H. Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive. Fuel, 2020, 266: 117090
CrossRef Google scholar
[2]
Hamidi Y, Ataei S A, Sarrafi A. A highly efficient method with low energy and water consumption in biodegradation of total petroleum hydrocarbons of oily sludge. Journal of Environmental Management, 2021, 293: 112911
CrossRef Google scholar
[3]
Liu J, Zhang Y, Peng K, Zhao X, Xiong Y, Huang X. A review of the interfacial stability mechanism of aging oily sludge: heavy components, inorganic particles, and their synergism. Journal of Hazardous Materials, 2021, 415: 125624
CrossRef Google scholar
[4]
Zou H, Liu C, Evrendilek F, He Y, Liu J. Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres. Renewable Energy, 2021, 171: 1327–1343
CrossRef Google scholar
[5]
Gao N, Li J, Quan C, Wang X, Yang Y. Oily sludge catalytic pyrolysis combined with fine particle removal using a Ni-ceramic membrane. Fuel, 2020, 277: 118134
CrossRef Google scholar
[6]
Li Z, Zhou Y, Meng X, Wang S. Harmless and efficient treatment of oily drilling cuttings. Journal of Petroleum Science Engineering, 2021, 202: 108542
CrossRef Google scholar
[7]
Gao Y, Ding R, Wu S, Wu Y, Zhang Y, Yang M. Influence of ultrasonic waves on the removal of different oil components from oily sludge. Environmental Technology, 2015, 36(13-16): 1771–1775
CrossRef Google scholar
[8]
Chen G, Li J, Li K, Lin F, Tian W, Che L, Yan B, Ma W, Song Y. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge. Fuel, 2020, 273: 117772
CrossRef Google scholar
[9]
Kruse A, Dahmen N. Water—a magic solvent for biomass conversion. Journal of Supercritical Fluids, 2015, 96: 36–45
CrossRef Google scholar
[10]
Okolie J A, Nanda S, Dalai A K, Kozinski J A. Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. International Journal of Hydrogen Energy, 2020, 45(36): 18275–18288
CrossRef Google scholar
[11]
Ding W, Shi J, Wei W, Cao C, Jin H. A molecular dynamics simulation study on solubility behaviors of polycyclic aromatic hydrocarbons in supercritical water/hydrogen environment. International Journal of Hydrogen Energy, 2021, 46(3): 2899–2904
CrossRef Google scholar
[12]
Khan M K, Cahyadi H S, Kim S M, Kim J. Efficient oil recovery from highly stable toxic oily sludge using supercritical water. Fuel, 2019, 235: 460–472
CrossRef Google scholar
[13]
Adar E, Ince M, Bilgili M S. Supercritical water gasification of sewage sludge by continuous flow tubular reactor: a pilot scale study. Chemical Engineering Journal, 2020, 391: 123499
CrossRef Google scholar
[14]
Hantoko D, Antoni , Kanchanatip E, Yan M, Weng Z, Gao Z, Zhong Y. Assessment of sewage sludge gasification in supercritical water for H2-rich syngas production. Process Safety and Environmental Protection, 2019, 131: 63–72
CrossRef Google scholar
[15]
Lin J, Liao Q, Hu Y, Ma R, Cui C, Sun S, Liu X. Effects of process parameters on sulfur migration and H2S generation during supercritical water gasification of sludge. Journal of Hazardous Materials, 2021, 403: 123678
CrossRef Google scholar
[16]
Chen Y, Yi L, Li S, Yin J, Jin H. Catalytic gasification of sewage sludge in near and supercritical water with different catalysts. Chemical Engineering Journal, 2020, 388: 124292
CrossRef Google scholar
[17]
Qian L, Wang S, Xu D, Guo Y, Tang X, Wang L. Treatment of municipal sewage sludge in supercritical water: a review. Water Research, 2016, 89: 118–131
CrossRef Google scholar
[18]
Cao C, Xie Y, Mao L, Wei W, Shi J, Jin H. Hydrogen production from supercritical water gasification of soda black liquor with various metal oxides. Renewable Energy, 2020, 157: 24–32
CrossRef Google scholar
[19]
Han Y, Wang Y, Ma T, Li W, Zhang J, Zhang M. Mechanistic understanding of Cu-based bimetallic catalysts. Frontiers of Chemical Science and Engineering, 2020, 14(5): 689–748
CrossRef Google scholar
[20]
Gao Y, Zhu W, Liu J, Lin P, Zhang J, Huang T, Liu K. Mesoporous sulfur-doped CoFe2O4 as a new Fenton catalyst for the highly efficient pollutants removal. Applied Catalysis B: Environmental, 2021, 295: 120273
CrossRef Google scholar
[21]
van Duin A C T, Dasgupta S, Lorant F, Goddard W A. ReaxFF: a reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409
CrossRef Google scholar
[22]
Han Y, Jiang D, Zhang J, Li W, Gan Z, Gu J. Development, application and challenges of ReaxFF reactive force field in molecular simulations. Frontiers of Chemical Science and Engineering, 2016, 10(1): 16–38
CrossRef Google scholar
[23]
Zhang J, Weng X, Han Y, Li W, Cheng J, Gan Z, Gu J. The effect of supercritical water on coal pyrolysis and hydrogen production: a combined ReaxFF and DFT study. Fuel, 2013, 108: 682–690
CrossRef Google scholar
[24]
Han Y, Ma T, Chen F, Li W, Zhang J. Supercritical water gasification of naphthalene over iron oxide catalyst: a ReaxFF molecular dynamics study. International Journal of Hydrogen Energy, 2019, 44(57): 30486–30498
CrossRef Google scholar
[25]
Zhang J, Gu J, Han Y, Li W, Gan Z, Gu J. Supercritical water oxidation vs supercritical water gasification: which process is better for explosive wastewater treatment? Industrial & Engineering Chemistry Research, 2015, 54(4): 1251–1260
CrossRef Google scholar
[26]
Han Y, Chen F, Ma T, Gong H, Al-Shwafy K W A, Li W, Zhang J, Zhang M. Size effect of a Ni nanocatalyst on supercritical water gasification of lignin by reactive molecular dynamics simulations. Industrial & Engineering Chemistry Research, 2019, 58(51): 23014–23024
CrossRef Google scholar
[27]
Jiang D, Wang Y, Zhang M, Zhang J, Li W, Han Y. H2 and CO production through coking wastewater in supercritical water condition: ReaxFF reactive molecular dynamics simulation. International Journal of Hydrogen Energy, 2017, 42(15): 9667–9678
CrossRef Google scholar
[28]
Han Y, Ma T, Chen F, Li W, Zhang J. Synergistic mechanism of Ni catalyst and supercritical water during refractory organic wastewater treatment. Industrial & Engineering Chemistry Research, 2019, 58(4): 1535–1547
CrossRef Google scholar
[29]
Bai Y, Sui H, Liu X, He L, Li X, Thormann E. Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface: a molecular dynamics simulation. Fuel, 2019, 240: 252–261
CrossRef Google scholar
[30]
Schuler B, Meyer G, Pena D, Mullins O C, Gross L. Unraveling the molecular structures of asphaltenes by atomic force microscopy. Journal of the American Chemical Society, 2015, 137(31): 9870–9876
CrossRef Google scholar
[31]
Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Chemical Physics, 1994, 98(45): 11623–11627
CrossRef Google scholar
[32]
Krishnan R, Binkley J S, Seeger R, Pople J A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal of Chemical Physics, 1980, 72(1): 650–654
CrossRef Google scholar
[33]
Shin Y K, Kwak H, Vasenkov A V, Sengupta D, van Duin A C T. Development of a ReaxFF reactive force field for Fe/Cr/O/S and application to oxidation of butane over a pyrite-covered Cr2O3 catalyst. ACS Catalysis, 2015, 5(12): 7226–7236
CrossRef Google scholar
[34]
Hu Y, Qi L, Rao K T V, Zhao B, Li H, Zeng Y, Xu C. Supercritical water gasification of biocrude oil from low-temperature liquefaction of algal lipid extraction residue. Fuel, 2020, 276: 118017
CrossRef Google scholar
[35]
Sorensen M R, Voter A F. Temperature-accelerated dynamics for simulations of infrequent events. Journal of Chemical Physics, 2000, 112(21): 9599–9606
CrossRef Google scholar
[36]
Wang X, Xue X, Zhang C. Early events of the carburization of Fe nanoparticles in ethylene pyrolysis: reactive force field molecular dynamics simulations. Journal of Physical Chemistry C, 2018, 122(20): 10835–10845
CrossRef Google scholar
[37]
Bentria E T, Akande S O, Becquart C S, Mousseau N, Bouhali O, El-Mellouhi F. Capturing the iron carburization mechanisms from the surface to bulk. Journal of Physical Chemistry C, 2020, 124(52): 28569–28579
CrossRef Google scholar
[38]
Liu X, Wen X, Hoffmann R. Surface activation of transition metal nanoparticles for heterogeneous catalysis: what we can learn from molecular dynamics. ACS Catalysis, 2018, 8(4): 3365–3375
CrossRef Google scholar
[39]
Chen H, He Z, Zhang B, Feng H, Kandasamy S, Wang B. Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of spirulina platensis, α-cellulose, and lignin. Energy, 2019, 179: 1103–1113
CrossRef Google scholar
[40]
Meng N, Jiang D, Liu Y, Gao Z, Cao Y, Zhang J, Gu J, Han Y. Sulfur transformation in coal during supercritical water gasification. Fuel, 2016, 186: 394–404
CrossRef Google scholar
[41]
Dasireddy V D B C, Likozar B. Direct methanol production from mixed methane/H2O/N2O feedstocks over Cu-Fe/Al2O3 catalysts. Fuel, 2021, 301: 121084
CrossRef Google scholar
[42]
Kou J, Yi L, Li G, Cheng K, Wang R, Zhang D, Jin H, Guo L. Structural effect of ZrO2 on supported Ni-based catalysts for supercritical water gasification of oil-containing wastewater. International Journal of Hydrogen Energy, 2021, 46(24): 12874–12885
CrossRef Google scholar
[43]
Mastuli M S, Kamarulzaman N, Kasim M F, Mahat A M, Matsumura Y, Taufiq-Yap Y H. Catalytic supercritical water gasification of oil palm frond biomass using nanosized MgO doped Zn catalysts. Journal of Supercritical Fluids, 2019, 154: 104610
CrossRef Google scholar
[44]
Samiee-Zafarghandi R, Hadi A, Karimi-Sabet J. Graphene-supported metal nanoparticles as novel catalysts for syngas production using supercritical water gasification of microalgae. Biomass and Bioenergy, 2019, 121: 13–21
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21978210 and U20A20151), Tianjin Natural Science Foundation, China (Grant No. 19JCYBJC20000) and the National Key R&D Program of China (Grant No. 2018YFA0702403). The Gaussian 09 software was supported by the National Supercomputing Center in Shenzhen.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-021-2125-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4029 KB)

Accesses

Citations

Detail

Sections
Recommended

/