Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors

Yunpeng Shang , Xiaohong Sun , Zhe Chen , Kunzhou Xiong , Yunmei Zhou , Shu Cai , Chunming Zheng

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1500 -1513.

PDF (5484KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1500 -1513. DOI: 10.1007/s11705-021-2086-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors

Author information +
History +
PDF (5484KB)

Abstract

As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh∙g–1 after 500 cycles at 1 A∙g–1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh∙g–1 at 0.1 A∙g–1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh∙kg–1 at the power density of 265 W∙kg–1, and 50.0 Wh∙kg–1 even at 26.5 kW∙kg–1. After 10000 cycles at 1 A∙g–1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.

Graphical abstract

Keywords

in-situ carbon-doped / surface unsaturated sulfur enriched / pseudocapacitive energy storage / biomass-derived carbon / lithium-ion capacitors

Cite this article

Download citation ▾
Yunpeng Shang, Xiaohong Sun, Zhe Chen, Kunzhou Xiong, Yunmei Zhou, Shu Cai, Chunming Zheng. Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors. Front. Chem. Sci. Eng., 2021, 15(6): 1500-1513 DOI:10.1007/s11705-021-2086-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aravindan V, Gnanaraj J, Lee Y S, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chemical Reviews, 2014, 114(23): 11619–11635

[2]

Jiang X P, Li Z Y, Lu G J, Hu N, Ji G P, Liu W, Guo X L, Wu D, Liu X J, Xu C H. Pores enriched CoNiO2 nanosheets on graphene hollow fibers for high performance supercapacitor-battery hybrid energy storage. Electrochimica Acta, 2020, 358: 136857

[3]

Wang R H, Zhao Q N, Zheng W K, Ren Z L, Hu X L, Li J, Lu L, Hu N, Molenda J, Liu X J, . Achieving high energy density in a 4.5 V all nitrogen-doped graphene based lithium-ion capacitor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(34): 19909–19921

[4]

Wang Y K, Liu M C, Cao J Y, Zhang H J, Kong L B, Trudgeon D P, Li X H, Walsh F C. 3D hierarchically structured CoS nanosheets: Li+ storage mechanism and application of the high-performance lithium-ion capacitors. ACS Applied Materials & Interfaces, 2020, 12(3): 3709–3718

[5]

Xing T, Ouyang Y H, Zheng L P, Wang X Y, Liu H, Chen M F, Yu R Z, Wang X Y, Wu C. Free-standing ternary metallic sulphides/Ni/C-nanofiber anodes for high-performance lithium-ion capacitors. Journal of Energy Chemistry, 2020, 42: 108–115

[6]

Zhan C Z, Liu W, Hu M X, Liang Q H, Yu X L, Shen Y, Lv R T, Kang F Y, Huang Z H. High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Materials, 2018, 10(8): 775–787

[7]

Wang Q F, Zou R Q, Xia W, Ma J, Qiu B, Mahmood A, Zhao R, Yang Y C, Xia D G, Xu Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small, 2015, 11(21): 2511–2517

[8]

Wang H W, Guan C, Wang X F, Fan H J. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small, 2015, 11(12): 1470–1477

[9]

Yuan X Q, Liu B C, Hou H J, Zeinu K, He Y H, Yang X R, Xue W J, He X L, Huang L, Zhu X L, . Facile synthesis of mesoporous graphene platelets with in situ nitrogen and sulfur doping for lithium-sulfur batteries. RSC Advances, 2017, 7(36): 22567–22577

[10]

Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014, 7(5): 1597–1614

[11]

Wu Z C, Li B E, Xue Y J, Li J J, Zhang Y L, Gao F. Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(38): 19445–19454

[12]

Zhao D Q, Zong W J, Fan Z H, Xiong S M, Du M, Wu T H, Fang Y W, Ji F Y, Xu X. Synthesis of carbon-doped BiVO4@multi-walled carbon nanotubes with high visible-light absorption behavior, and evaluation of their photocatalytic properties. CrystEngComm, 2016, 18(47): 9007–9015

[13]

Natarajan S, Lee Y S, Aravindan V. Biomass-derived carbon materials as prospective electrodes for high-energy lithium- and sodium-ion capacitors. Chemistry, an Asian Journal, 2019, 14(7): 936–951

[14]

Zhang B, Ye X C, Hou W Y, Zhao Y, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. Journal of Physical Chemistry B, 2006, 110(18): 8978–8985

[15]

Xie X Q, Ao Z M, Su D W, Zhang J Q, Wang G X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Advanced Functional Materials, 2015, 25(9): 1393–1403

[16]

Wang X, Li X Y, Li Q, Li H S, Xu J, Wang H, Zhao G X, Lu L S, Lin X Y, Li H L, et al. Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Letters, 2018, 10(3): 46

[17]

Li W D, Wang D Z, Song Z H, Gong Z J, Guo X S, Liu J, Zhang Z H, Li G C. Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Research, 2019, 12(11): 2908–2917

[18]

Xu Y X, Sheng K X, Li C, Shi G Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7): 4324–4330

[19]

Singh V, Tiwari A, Nagaiah T C. Facet-controlled morphology of cobalt disulfide towards enhanced oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(45): 22545–22554

[20]

Yu J X, Chen Z G, Zeng L, Ma Y Y, Feng Z, Wu Y, Lin H J, Zhao L H, He Y M. Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production. Solar Energy Materials and Solar Cells, 2018, 179: 45–56

[21]

Tang J H, Shen J F, Li N, Ye M X. A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors. Ceramics International, 2014, 40(A): 15411–15419

[22]

Meng Z D, Zhu L, Ullah K, Ye S, Oh W C. Detection of oxygen species generated by CNT photosensitized CoS2 nanocomposites. Applied Surface Science, 2013, 286: 261–268

[23]

Ye J B, Ma L, Chen W X, Ma Y J, Huang F H, Gao C, Lee J Y. Supramolecule-mediated synthesis of MoS2/reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6884–6893

[24]

Ma L, Huang G C, Chen W X, Wang Z, Ye J B, Li H Y, Chen D Y, Lee J Y. Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage. Journal of Power Sources, 2014, 264: 262–271

[25]

Zhu L, Susac D, Teo M, Wong K C, Wong P C, Parsons R R, Bizzotto D, Mitchell K A R, Campbell S A. Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. Journal of Catalysis, 2008, 258(1): 235–242

[26]

Yang Y, Zhang K, Lin H, Li X, Chan H C, Yang L, Gao Q. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366

[27]

Jiao Z, Zhao P D, He Y C, Ling L, Sun W F, Cheng L L. Mesoporous yolk-shell CoS2/nitrogen-doped carbon dodecahedron nanocomposites as efficient anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 809: 151854

[28]

Yuan J, Zhu J W, Wang R H, Deng Y X, Zhang S, Yao C, Li Y J, Li X L, Xu C H. 3D few-layered MoS2/graphene hybrid aerogels on carbon fiber papers: a free-standing electrode for high-performance lithium/sodium-ion batteries. Chemical Engineering Journal, 2020, 398: 125592

[29]

He J R, Chen Y F, Li P J, Fu F, Wang Z G, Zhang W L. Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries. Electrochimica Acta, 2015, 182: 424–429

[30]

Zhang Y H, Wang N N, Sun C H, Lu Z X, Xue P, Tang B, Bai Z C, Dou S X. 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chemical Engineering Journal, 2018, 332: 370–376

[31]

Wang H C, Cui Z, Fan C Y, Liu S Y, Shi Y H, Wu X L, Zhang J P. 3D porous CoS2 hexadecahedron derived from MOC toward ultrafast and long-lifespan lithium storage. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(26): 6798–6803

[32]

Fan S W, Li G D, Cai F P, Yang G. Synthesis of porous Ni-doped CoSe2/C nanospheres towards high-rate and long-term sodium-ion half/full batteries. Chemistry (Weinheim an der Bergstrasse, Germany), 2020, 26(39): 8579–8587

[33]

Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828

[34]

Falco C, Baccile N, Titirici M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry, 2011, 13(11): 3273–3281

[35]

Hoekman S K, Broch A, Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy & Fuels, 2011, 25(4): 1802–1810

[36]

Shu Y, Bai Q H, Fu G X, Xiong Q C, Li C, Ding H F, Shen Y H, Uyama H. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohydrate Polymers, 2020, 227: 115346

[37]

Shang Y P, Hu X D, Li X, Cai S, Liang G C, Zhao J M, Zheng C M, Sun X H. A facile synthesis of nitrogen-doped hierarchical porous carbon with hollow sphere structure for high-performance supercapacitors. Journal of Materials Science, 2019, 54(19): 12747–12757

[38]

Zou Z M, Jiang C H. Hierarchical porous carbons derived from leftover rice for high performance supercapacitors. Journal of Alloys and Compounds, 2020, 815: 152280

[39]

Liu Y, Zhang M Y, Wang L Q, Hou Y J, Guo C X, Xin H Y, Xu S. A biomass carbon material with microtubule bundling and natural O-doping derived from goldenberry calyx and its electrochemical performance in supercapacitor. Chinese Chemical Letters, 2020, 31(3): 805–808

[40]

Yu X, Park H S. Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon, 2014, 77: 59–65

[41]

Li Y J, Wang G L, Wei T, Fan Z J, Yan P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy, 2016, 19: 165–175

[42]

Biswal M, Banerjee A, Deo M, Ogale S. From dead leaves to high energy density supercapacitors. Energy & Environmental Science, 2013, 6(4): 1249–1259

[43]

Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon, 2003, 41(2): 267–275

[44]

Aida T, Yamada K, Morita M. An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode. Electrochemical and Solid-State Letters, 2006, 9(12): 534–536

[45]

Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy & Environmental Science, 2015, 8(3): 941–955

[46]

Luo J M, Zhang W K, Yuan H D, Jin C B, Zhang L Y, Huang H, Liang C, Xia Y, Zhang J, Gan Y P, Tao X. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano, 2017, 11(3): 2459–2469

[47]

Su J T, Wu Y J, Huang C L, Chen Y A, Cheng H Y, Cheng P Y, Hsieh C T, Lu S Y. Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chemical Engineering Journal, 2020, 396: 125314

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5484KB)

Supplementary files

FCE-21020-OF-SH_suppl_1

7205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/