Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light

Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu

PDF(1993 KB)
PDF(1993 KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 892-901. DOI: 10.1007/s11705-020-2011-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light

Author information +
History +

Abstract

Photocatalytic membranes have received increasing attention due to their excellent separation and photodegradation of organic contaminants in wastewater. Herein, we bound Ag-AgBr nanoparticles onto a synthesized polyacrylonitrile-ethanolamine (PAN-ETA) membrane with the aid of a chitosan (CS)-TiO2 layer via vacuum filtration and in-situ partial reduction. The introduction of the CS-TiO2 layer improved surface hydrophilicity and provided attachment sites for the Ag-AgBr nanoparticles. The PAN-ETA/CS-TiO2/Ag-AgBr photocatalytic membranes showed a relatively high water permeation flux (~ 47 L·m–2·h–1·bar–1) and dyes rejection (methyl orange: 88.22%; congo red: 95%; methyl blue: 97.41%; rose bengal: 99.98%). Additionally, the composite membranes exhibited potential long-term stability for dye/salt separation (dye rejection: ~97%; salt rejection: ~6.5%). Moreover, the methylene blue and rhodamine B solutions (20 mL, 10 mg·L−1) were degraded approximately 90.75% and 96.81% in batch mode via the synthesized photocatalytic membranes under visible light irradiation for 30 min. This study provides a feasible method for the combination of polymeric membranes and inorganic catalytic materials.

Graphical abstract

Keywords

Ag-AgBr / dye rejection / photodegradation / visible light

Cite this article

Download citation ▾
Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Front. Chem. Sci. Eng., 2021, 15(4): 892‒901 https://doi.org/10.1007/s11705-020-2011-0

References

[1]
Dong C, Lu J, Qiu B, Shen B, Xing M, Zhang J. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Applied Catalysis B: Environmental, 2018, 222: 146–156
CrossRef Google scholar
[2]
Liu H, Sun R, Feng S, Wang D, Liu H. Rapid synthesis of a silsesquioxane-based disulfide-linked polymer for selective removal of cationic dyes from aqueous solutions. Chemical Engineering Journal, 2019, 359: 436–445
CrossRef Google scholar
[3]
Khalil A, Aboamera N M, Nasser W S, Mahmoud W H, Mohamed G G. Photodegradation of organic dyes by PAN/SiO2-TiO2-NH2 nanofiber membrane under visible light. Separation and Purification Technology, 2019, 224: 509–514
CrossRef Google scholar
[4]
Zhao Y, Kang S, Qin L, Wang W, Zhang T, Song S, Komarneni S. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chemical Engineering Journal, 2020, 379: 122322
CrossRef Google scholar
[5]
Samanta P, Chandra P, Desai A V, Ghosh S K. Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from an aqueous medium. Materials Chemistry Frontiers, 2017, 1(7): 1384–1388
CrossRef Google scholar
[6]
Verma A K, Dash R R, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 2012, 93(1): 154–168
CrossRef Google scholar
[7]
Dutta K, Mukhopadhyay S, Bhattacharjee S, Chaudhuri B. Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials, 2001, 84(1): 57–71
CrossRef Google scholar
[8]
Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. Journal of Hazardous Materials, 2016, 317: 60–72
CrossRef Google scholar
[9]
Fan H, Gu J, Meng H, Knebel A, Caro J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angewandte Chemie International Edition, 2018, 57(15): 4083–4087
CrossRef Google scholar
[10]
Liu A, Wang C C, Wang C Z, Fu H F, Peng W, Cao Y L, Chu H Y, Du A F. Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers. Journal of Colloid and Interface Science, 2018, 512: 730–739
CrossRef Google scholar
[11]
Dou T, Zang L, Zhang Y, Sun Z, Sun L, Wang C. Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue. Materials Letters, 2019, 244: 151–154
CrossRef Google scholar
[12]
Brillas E, Martínez-Huitle C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 2015, 166-167: 603–643
CrossRef Google scholar
[13]
Li J, Yuan S, Zhu J, Van der Bruggen B. High-flux, antibacterial composite membranes via polydopamine-assisted PEI-TiO2/Ag modification for dye removal. Chemical Engineering Journal, 2019, 373: 275–284
CrossRef Google scholar
[14]
Li B, Meng M, Cui Y, Wu Y, Zhang Y, Dong H, Zhu Z, Feng Y, Wu C. Changing conventional blending photocatalytic membranes (BPMs): focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chemical Engineering Journal, 2019, 365: 405–414
CrossRef Google scholar
[15]
Zhu J, Wang J, Hou J, Zhang Y, Liu J, Van der Bruggen B. Graphene-based antimicrobial polymeric membranes: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(15): 6776–6793
CrossRef Google scholar
[16]
Wang T, Wang Z, Wang P, Tang Y. An integration of photo-Fenton and membrane process for water treatment by a PVDF@CuFe2O4 catalytic membrane. Journal of Membrane Science, 2019, 572: 419–427
CrossRef Google scholar
[17]
Ong C S, Goh P S, Lau W J, Misdan N, Ismail A F. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination, 2016, 393: 2–15
CrossRef Google scholar
[18]
Kochkodan V, Hilal N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 2015, 356: 187–207
CrossRef Google scholar
[19]
Athanasekou C P, Moustakas N G, Morales-Torres S, Pastrana-Martínez L M, Figueiredo J L, Faria J L, Silva A M T, Dona-Rodriguez J M, Romanos G E, Falaras P. Ceramic photocatalytic membranes for water filtration under UV and visible light. Applied Catalysis B: Environmental, 2015, 178: 12–19
CrossRef Google scholar
[20]
Mozia S, Darowna D, Orecki A, Wróbel R, Wilpiszewska K, Morawski A W. Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. Journal of Membrane Science, 2014, 470: 356–368
CrossRef Google scholar
[21]
Gao Y, Hu M, Mi B. Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science, 2014, 455: 349–356
CrossRef Google scholar
[22]
Horovitz I, Avisar D, Baker M A, Grilli R, Lozzi L, Di Camillo D, Mamane H. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: influence of physical parameters. Journal of Hazardous Materials, 2016, 310: 98–107
CrossRef Google scholar
[23]
Rawindran H, Lim J W, Goh P S, Subramaniam M N, Ismail A F, Radi bin Nik M Daud N M, Rezaei-Dasht Arzhandi M. Simultaneous separation and degradation of surfactants laden in produced water using PVDF/TiO2 photocatalytic membrane. Journal of Cleaner Production, 2019, 221: 490–501
CrossRef Google scholar
[24]
Hu C, Wang M S, Chen C H, Chen Y R, Huang P H, Tung K L. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment. Journal of Membrane Science, 2019, 580: 1–11
CrossRef Google scholar
[25]
Qu L, Zhu G, Ji J, Yadav T P, Chen Y, Yang G, Xu H, Li H. Recyclable visible light-driven O-g-C3N4/graphene oxide/N-carbon nanotube membrane for efficient removal of organic pollutants. ACS Applied Materials & Interfaces, 2018, 10(49): 42427–42435
CrossRef Google scholar
[26]
Qin A, Li X, Zhao X, Liu D, He C. Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Applied Materials & Interfaces, 2015, 7(16): 8427–8436
CrossRef Google scholar
[27]
Li W, Li B, Meng M, Cui Y, Wu Y, Zhang Y, Dong H, Feng Y. Bimetallic Au/Ag decorated TiO2 nanocomposite membrane for enhanced photocatalytic degradation of tetracycline and bactericidal efficiency. Applied Surface Science, 2019, 487: 1008–1017
CrossRef Google scholar
[28]
Tian J, Hao P, Wei N, Cui H, Liu H. 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catalysis, 2015, 5(8): 4530–4536
CrossRef Google scholar
[29]
Liu B, Liu L M, Lang X F, Wang H Y, Lou X W, Aydil E S. Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy & Environmental Science, 2014, 7(8): 2592–2597
CrossRef Google scholar
[30]
Kong W, Wang S, Wu D, Chen C, Luo Y, Pei Y, Tian B, Zhang J. Fabrication of 3D sponge@AgBr-AgCl/Ag and tubular photo-reactor for continuous waste water purification under sunlight irradiation. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14051–14063
CrossRef Google scholar
[31]
Wang P, Huang B, Zhang X, Qin X, Dai Y, Wang Z, Lou Z. Highly efficient visible light plasmonic photocatalysts Ag@Ag(Cl,Br) and Ag@AgCl-AgI. ChemCatChem, 2011, 3(2): 360–364
CrossRef Google scholar
[32]
Madaeni S S, Ghaemi N. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. Journal of Membrane Science, 2007, 303(1): 221–233
CrossRef Google scholar
[33]
Wang Y X, Ma S, Huang M N, Yang H, Xu Z L, Xu Z. Ag NPs coated PVDF@TiO2 nanofiber membrane prepared by epitaxial growth on TiO2 inter-layer for 4-NP reduction application. Separation and Purification Technology, 2019, 227: 115700
CrossRef Google scholar
[34]
Lee H S, Im S J, Kim J H, Kim H J, Kim J P, Min B R. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 2008, 219(1): 48–56
CrossRef Google scholar
[35]
Wang Y X, Li Y J, Yang H, Xu Z L. Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application. Journal of Membrane Science, 2019, 580: 40–48
CrossRef Google scholar
[36]
Zhang X, Wang M, Ji C H, Xu X R, Ma X H, Xu Z L. Multilayer assembled CS-PSS/ceramic hollow fiber membranes for pervaporation dehydration. Separation and Purification Technology, 2018, 203: 84–92
CrossRef Google scholar
[37]
Qin Y, Wang Y X, Yang H, Xu Z L. ETA-m-PAN and its composite membrane with high performance prepared by in situ modification/NIPS principle. Macromolecular Materials and Engineering, 2019, 304(4): 1800745
CrossRef Google scholar
[38]
Dai J, Sun Y, Liu Z. Efficient degradation of tetracycline in aqueous solution by Ag/AgBr catalyst under solar irradiation. Materials Research Express, 2019, 6(8): 085512
CrossRef Google scholar
[39]
Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo M H. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(8): 1821–1824
CrossRef Google scholar
[40]
Dai Z W, Wan L S, Xu Z K. Surface glycosylation of polyacrylonitrile ultrafiltration membrane to improve its anti-fouling performance. Journal of Membrane Science, 2008, 325(1): 479–485
CrossRef Google scholar
[41]
Wang J, Zhang W, Li W, Xing W. Preparation and characterization of chitosan-poly(vinyl alcohol)/polyvinylidene fluoride hollow fiber composite membranes for pervaporation dehydration of isopropanol. Korean Journal of Chemical Engineering, 2015, 32(7): 1369–1376
CrossRef Google scholar
[42]
Beppu M M, Vieira R S, Aimoli C G, Santana C C. Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. Journal of Membrane Science, 2007, 301(1): 126–130
CrossRef Google scholar
[43]
Vieira R S, Beppu M M. Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2006, 279(1): 196–207
CrossRef Google scholar
[44]
Ye X, Zhou Y, Chen J, Sun Y. Synthesis and infrared emissivity study of collagen-g-PMMA/Ag@TiO2 composite. Materials Chemistry and Physics, 2007, 106(2): 447–451
CrossRef Google scholar
[45]
Dong R, Tian B, Zeng C, Li T, Wang T, Zhang J. Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst. Journal of Physical Chemistry C, 2013, 117(1): 213–220
CrossRef Google scholar
[46]
Zhu M, Chen P, Liu M. Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: enhanced catalytic performance by morphology selection. Journal of Materials Chemistry, 2011, 21(41): 16413–16419
CrossRef Google scholar
[47]
Eswar N K, Katkar V V, Ramamurthy P C, Madras G. Novel AgBr/Ag3PO4 decorated ceria nanoflake composites for enhanced photocatalytic activity toward dyes and bacteria under visible light. Industrial & Engineering Chemistry Research, 2015, 54(33): 8031–8042
CrossRef Google scholar
[48]
Zhang R, Cai Y, Zhu X, Han Q, Zhang T, Liu Y, Li Y, Wang A. A novel photocatalytic membrane decorated with PDA/RGO/Ag3PO4 for catalytic dye decomposition. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 563: 68–76
CrossRef Google scholar
[49]
Zhang D, Dai F, Zhang P, An Z, Zhao Y, Chen L. The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Materials Science and Engineering C, 2019, 96: 684–692
CrossRef Google scholar
[50]
Zhou Y, Li X, Yu H Y, Hu G L, Yao J M. Facile fabrication of controllable zinc oxide nanorod clusters on polyacrylonitrile nanofibers via repeatedly alternating immersion method. Journal of Nanoparticle Research, 2016, 18(12): 359
CrossRef Google scholar
[51]
Li J H, Yan B F, Shao X S, Wang S S, Tian H Y, Zhang Q Q. Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Applied Surface Science, 2015, 324: 82–89
CrossRef Google scholar
[52]
Zhang M, Liu Z, Gao Y, Shu L. Ag modified g-C3N4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance. RSC Advances, 2017, 7(68): 42919–42928
CrossRef Google scholar
[53]
Mahlambi M M, Mahlangu O T, Vilakati G D, Mamba B B. Visible light photodegradation of Rhodamine B dye by two forms of carbon-covered alumina supported TiO2/polysulfone membranes. Industrial & Engineering Chemistry Research, 2014, 53(14): 5709–5717
CrossRef Google scholar
[54]
Goei R, Dong Z, Lim T T. High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: fabrication, characterizations and performances. Chemical Engineering Journal, 2013, 228: 1030–1039
CrossRef Google scholar

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21908054).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-020-2011-0 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1993 KB)

Accesses

Citations

Detail

Sections
Recommended

/