High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach

Yunrui Tian , Haishun Du , Shatila Sarwar , Wenjie Dong , Yayun Zheng , Shumin Wang , Qingping Guo , Jujie Luo , Xinyu Zhang

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 1021 -1032.

PDF (2250KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 1021 -1032. DOI: 10.1007/s11705-020-2006-x
RESEARCH ARTICLE
RESEARCH ARTICLE

High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach

Author information +
History +
PDF (2250KB)

Abstract

We present a one-step route for the preparation of nickel phosphide/carbon nanotube (Ni2P@CNT) nanocomposites for supercapacitor applications using a facile, ultrafast (90 s) microwave-based approach. Ni2P nanoparticles could grow uniformly on the surface of CNTs under the optimized reaction conditions, namely, a feeding ratio of 30:50:25 for CNT, Ni(NO3)2·6H2O, and red phosphorus and a microwave power of 1000 W for 90 s. Our study demonstrated that the single-step microwave synthesis process for creating metal phosphide nanoparticles was faster and simpler than all the other existing methods. Electrochemical results showed that the specific capacitance of the optimal Ni2P@CNT-nanocomposite electrode displayed a high specific capacitance of 854 F·g−1 at 1 A·g−1 and a superior capacitance retention of 84% after 5000 cycles at 10 A·g−1. Finally, an asymmetric supercapacitor was assembled using the nanocomposite with activated carbon as one electrode (Ni2P@CNT//AC), which showed a remarkable energy density of 33.5 W·h·kg−1 and a power density of 387.5 W·kg−1. This work will pave the way for the microwave synthesis of other transition metal phosphide materials for use in energy storage systems.

Graphical abstract

Keywords

Ni2P / CNT / supercapacitors / nanocomposites / microwave

Cite this article

Download citation ▾
Yunrui Tian, Haishun Du, Shatila Sarwar, Wenjie Dong, Yayun Zheng, Shumin Wang, Qingping Guo, Jujie Luo, Xinyu Zhang. High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach. Front. Chem. Sci. Eng., 2021, 15(4): 1021-1032 DOI:10.1007/s11705-020-2006-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kong S Y, Cheng K, Ouyang T, Gao Y Y, Ye K, Wang G L, Cao D X. Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochimica Acta, 2017, 226: 29–39

[2]

Zhang N, Ding Y H, Zhang J Y, Fu B, Zhang X L, Zheng X F, Fang Y Z. Construction of MnO2 nanowires@Ni1−xCoxOy nanoflake core-shell heterostructure for high performance supercapacitor. Journal of Alloys and Compounds, 2017, 694: 1302–1308

[3]

Li Y J, Ou-Yang W, Xu X T, Wang M, Hou S J, Lu T, Yao Y F, Pan L K. Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors. Electrochimica Acta, 2018, 271: 591–598

[4]

Li Y J, Zhu G, Huang H L, Xu M, Lu T, Pan L K. A N, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(15): 9040–9050

[5]

Xu X T, Liu Y, Wang M, Zhu C, Lu T, Zhao R, Pan L K. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochimica Acta, 2016, 193: 88–95

[6]

Liu Z, Zhang L, Wang R G, Poyraz S, Cook J, Bozack M J, Das S, Zhang X Y, Hu L B. Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Scientific Reports, 2016, 6(1): 22503

[7]

Lu Z, Chang Z, Zhu W, Sun X. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications, 2011, 47(34): 9651

[8]

Xie J, Sun X, Zhang N, Xu K, Zhou M, Xie Y. Layer-by-layer beta-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2013, 2(1): 65–74

[9]

Muzaffar A, Ahamed M B, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renewable & Sustainable Energy Reviews, 2019, 101: 123–145

[10]

Zhang Q, Uchaker E, Candelaria S L, Cao G. Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42(7): 3127–3171

[11]

Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45(21): 5925–5950

[12]

Arul N S, Han J I. Enhanced pseudocapacitance of NiSe2/Ni(OH)2 nanocomposites for supercapacitor electrode. Materials Letters, 2019, 234: 87–91

[13]

Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730

[14]

Zhang N, Li Y F, Xu J Y, Li J J, Wei B, Ding Y, Arnorim I, Thomas R, Thalluri S M, Liu Y Y, High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano, 2019, 13(9): 10612–10621

[15]

Chen H C, Jiang S P, Xu B H, Huang C H, Hu Y Z, Qin Y L, He M X, Cao H J. Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6241–6249

[16]

Panneerselvam A, Malik M A, Afzaal M, O’Brien P, Helliwell M. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. Journal of the American Chemical Society, 2008, 130(8): 2420–2421

[17]

Li X, Elshahawy A M, Guan C, Wang J. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small, 2017, 13(39): 1701530

[18]

Pang H, Wei C, Ma Y, Zhao S, Li G, Zhang J, Chen J, Li S. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem, 2013, 78(6): 546–553

[19]

Zhao Y, Zhao M, Ding X, Liu Z R, Tian H, Shen H H, Zu X T, Li S A, Qiao L. One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 373: 1132–1143

[20]

Hou S J, Xu X T, Wang M, Xu Y Q, Lu T, Yao Y F, Pan L K. Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(369): 19054–19061

[21]

Jiang H, Zhao T, Li C, Ma J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry, 2011, 21(11): 3818–3823

[22]

Liu M C, Kong L B, Kang L, Li X, Walsh F C, Xing M, Lu C, Ma X J, Luo Y C. Synthesis and characterization of M3V2O8 (M= Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(14): 4919–4926

[23]

Shih Y L, Wu C L, Wu T Y, Chen D H. Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors. Nanotechnology, 2019, 30(11): 115601

[24]

Lv Z J, Zhong Q, Bu Y F. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Applied Surface Science, 2018, 439: 413–419

[25]

Zhang X, Han M M, Liu G Q, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Applied Catalysis B: Environmental, 2019, 244: 899–908

[26]

Wang J, Ciucci F. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 254: 292–299

[27]

Lin Y, Zhang J, Pan Y, Liu Y Q. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Applied Surface Science, 2017, 422: 828–837

[28]

Xu J Y, Li J J, Xiong D H, Zhang B S, Liu Y F, Wu K H, Amorim I, Li W, Liu L F. Trends in activity for the oxygen evolution reaction on transition metal (M= Fe, Co, Ni) phosphide precatalysts. Chemical Science (Cambridge), 2018, 9(14): 3470–3476

[29]

Huang Y F, Chiueh P T, Kuan W H, Lo S L. Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy, 2016, 100: 137–144

[30]

Dong J Y, Lu G, Yue J S, Cheng Z M, Kang X H. Valence modulation in hollow carbon nanosphere/manganese oxide composite for high performance supercapacitor. Applied Surface Science, 2019, 480: 1116–1125

[31]

Poyraz S, Zhang L, Schroder A, Zhang X Y. Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Applied Materials & Interfaces, 2015, 7(40): 22469–22477

[32]

Tian Y R, Du H S, Zhang M M, Zheng Y Y, Guo Q P, Zhang H P, Luo J J, Zhang X Y. Microwave synthesis of MoS2/MoO2@CNT nanocomposites with excellent cycle stability for supercapacitor electrodes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(31): 9545–9555

[33]

Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A A. Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694

[34]

Wang Z J, Jin Z L, Yuan H, Wang G R, Ma B Z. Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. Journal of Colloid and Interface Science, 2018, 532: 287–299

[35]

Xie S L, Gou J X. Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. Journal of Alloys and Compounds, 2017, 713: 10–13

[36]

Hosseini M G, Shahryari E. Synthesis. Characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline electrode as supercapacitor. Journal of Materials Science and Technology, 2016, 32(8): 763–773

[37]

Ghasem H M, Elham S. Anchoring RuO2 nanoparticles on reduced graphene oxide-multi-walled carbon nanotubes as a high-performance supercapacitor. Ionics, 2019, 25(5): 2383–2391

[38]

Yang X, Tian Y R, Sarwar S, Zhang M M, Zhang H P, Luo J J, Zhang X Y. Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochimica Acta, 2019, 311: 230–243

[39]

Bi Y H, Nautiyal A, Zhang H P, Luo J J, Zhang X Y. One-pot microwave synthesis of NiO/MnO2 composite as a high performance electrode material for supercapacitors. Electrochimica Acta, 2017, 260: 952–928

[40]

Zhao G Z, Li Y J, Zhu G, Shi J Y, Lu T, Pan L K. Biomass-based N, P, and S self-doped porous carbon for high performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12052–12060

[41]

Han L, Huang H L, Li J F, Yang Z L, Zhang X L, Zhang D F, Liu X J, Xu M, Pan L K. Novel zinc-iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(42): 24400–24407

[42]

Lou P, Cui Z, Jia Z, Sun J, Tan Y, Guo X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano, 2017, 11(4): 3705–3715

[43]

Sun L, Zhang Y, Zhang D Y, Zhang Y H. Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale, 2017, 9(46): 18552–18560

[44]

Chen L, Bai H, Huang Z, Li L. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy & Environmental Science, 2014, 7(5): 1750–1759

[45]

Barzegar F, Khaleed A A, Ugbo F U, Oyeniran K O, Momodu D Y, Bello A, Dangbegnon J K, Manyala N. Cycling and floating performance of symmetric supercapacitor derived from coconut shell biomass. AIP Advances, 2016, 6(11): 115306

[46]

An C H, Wang Y J, Li L, Qiu F Y, Xu Y N, Xu C C, Huang Y N, Jiao F, Yuan H T. Effects of highly crumpled graphene nanosheets on the electrochemical performances of pseudocapacitor electrode materials. Electrochimica Acta, 2014, 133: 180–187

[47]

Ding Y L, Alias H, Wen D S, Williams R A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 2006, 49(1): 240–250

[48]

Wu C, Kopold P, van Aken P A, Maier J, Yu Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Advanced Materials, 2017, 29(3): 1604015

[49]

Lu Y, Tu J P, Xiong Q Q, Xiang J Y, Mai Y J, Zhang J, Qiao Y Q, Wang X L, Gu C D, Mao S X. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries. Advanced Functional Materials, 2012, 22(18): 3927–3935

[50]

Guang Z X, Huang Y, Chen X F, Sun X, Wang M Y, Feng X S, Chen C, Liu X D. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 307: 260–268

[51]

Chen X, Cheng M, Chen D, Wang R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3892–3900

[52]

Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Advanced Materials, 2016, 28(19): 3646–3652

[53]

Lan Y Y, Zhao H Y, Zong Y, Li X H, Sun Y, Feng J, Wang Y, Zheng X T, Du Y P. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10(25): 11775–11781

[54]

Wang D, Kong L B, Liu M C, Luo Y C, Kang L. An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(49): 17897–17903

[55]

Ochai-Ejeh F, Madito M J, Makgopa K, Rantho M N, Olaniyan O, Manyala N. Electrochemical performance of hybrid supercapacitor device based on birnessite-type manganese oxide decorated on uncapped carbon nanotubes and porous activated carbon nanostructures. Electrochimica Acta, 2018, 289: 363–375

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2250KB)

Supplementary files

FCE-20065-OF-TY_suppl_1

3019

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/