The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance

Yuexin Hou , Xiaoyun Li , Minghui Sun , Chaofan Li , Syed ul Hasnain Bakhtiar , Kunhao Lei , Shen Yu , Zhao Wang , Zhiyi Hu , Lihua Chen , Bao-Lian Su

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (2) : 269 -278.

PDF (2772KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (2) : 269 -278. DOI: 10.1007/s11705-020-1948-3
RESEARCH ARTICLE
RESEARCH ARTICLE

The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance

Author information +
History +
PDF (2772KB)

Abstract

Hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios (Hier-ZSM-5- x, where x = 50, 100, 150 and 200) were synthesized using an ordered mesoporous carbon-silica composite as hard template. Hier-ZSM-5- x exhibits improved mass transport properties, excellent mechanical and hydrothermal stability, and higher catalytic activity than commercial bulk zeolites in the benzyl alcohol self-etherification reaction. Results show that a decrease in the Si/Al ratio in hierarchical single-crystal ZSM-5 zeolites leads to a significant increase in the acidity and the density of micropores, which increases the final catalytic conversion. The effect of porous hierarchy on the diffusion of active sites and the final catalytic activity was also studied by comparing the catalytic conversion after selectively designed poisoned acid sites. These poisoned Hier-ZSM-5- x shows much higher catalytic conversion than the poisoned commercial ZSM-5 zeolite, which indicates that the numerous intracrystalline mesopores significantly reduce the diffusion path of the reactant, leading to the faster diffusion inside the zeolite to contact with the acid sites in the micropores predominating in ZSM-5 zeolites. This study can be extended to develop a series of hierarchical single-crystal zeolites with expected catalytic performance.

Graphical abstract

Keywords

hierarchical zeolites / single crystalline / interconnected pores / improved diffusion performance / benzyl alcohol self-etherification reaction

Cite this article

Download citation ▾
Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Front. Chem. Sci. Eng., 2021, 15(2): 269-278 DOI:10.1007/s11705-020-1948-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aizenberg J, Weaver J C, Thanawala M S, Sundar V C, Morse D E, Fratzl P. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science, 2005, 309(5732): 275–278

[2]

Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4(4): 277–288

[3]

West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology. Science, 1997, 276(5309): 122–126

[4]

West G B, Brown J H, Enquist B J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science, 1999, 284(5420): 1677–1679

[5]

Murray C D. The physiological principle of minimum work: I. the vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences of the United States of America, 1926, 12(3): 207–214

[6]

Zheng X, Shen G, Wang C, Li Y, Dunphy D, Hasan T, Brinker C J, Su B. Bio-inspired Murray materials for mass transfer and activity. Nature Communications, 2017, 8(1): 14921–14930

[7]

Shamzhy M, Opanasenko M, Concepcion P, Martinez A. New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149

[8]

Tang Y, Li Y, Fung V, Jiang D, Huang W, Zhang S, Iwasawa Y, Sakata T, Luan N, Zhang X, Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nature Communications, 2018, 9(1): 1231–1242

[9]

Peng C, Du Y, Feng X, Hu Y, Fang X. Research and development of hydrocracking catalysts and technologies in China. Frontiers of Chemical Science and Engineering, 2018, 12(4): 867–877

[10]

Wang N, Sun Q, Bai R, Li X, Guo G, Yu J. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. Journal of the American Chemical Society, 2016, 138(24): 7484–7487

[11]

Kwok K M, Ong S W D, Chen L, Zeng H C. Transformation of stöber silica spheres to hollow hierarchical single-crystal ZSM-5 zeolites with encapsulated metal nanocatalysts for selective catalysis. ACS Applied Materials & Interfaces, 2019, 11(16): 14774–14785

[12]

Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels B F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 2016, 45(3): 584–611

[13]

Zhang Q, Chen G, Wang Y, Chen M, Guo G, Shi J, Luo J, Yu J. High-quality single-crystalline MFI-type nanozeolites: A facile synthetic strategy and MTP catalytic studies. Chemistry of Materials, 2018, 30(8): 2750–2758

[14]

Song B D, Li Y Q, Cao G, Sun Z H, Han X. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574

[15]

Cychosz K A, Guillet-Nicolas R, Garcia-Martinez J, Thommes M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 2017, 46(2): 389–414

[16]

Sun M, Chen C, Chen L, Su B. Hierarchically porous materials: Synthesis strategies and emerging applications. Frontiers of Chemical Science and Engineering, 2016, 10(3): 301–347

[17]

Ding K, Corma A, Maciá Agulló J A, Hu J G, Krämer S, Stair P C, Stucky G D. Constructing hierarchical porous zeolites via kinetic regulation. Journal of the American Chemical Society, 2015, 137(35): 11238–11241

[18]

Chen L, Li X, Rooke J C, Zhang Y, Yang X, Tang Y, Xiao F, Su B. Hierarchically structured zeolites: Synthesis, mass transport properties and applications. Journal of Materials Chemistry, 2012, 22(34): 17381–17403

[19]

Zhu J, Meng X, Xiao F. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 2013, 7(2): 233–248

[20]

Li S, Li J, Dong M, Fan S, Zhao T, Wang J, Fan W. Strategies to control zeolite particle morphology. Chemical Society Reviews, 2019, 48(3): 885–907

[21]

Zhang J, Rao C, Peng H, Peng C, Zhang L, Xu X, Liu W, Wang Z, Zhang N, Wang X. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite. Chemical Engineering Journal, 2018, 334: 10–18

[22]

Xu S M, Zhang X X, Cheng D G, Chen F Q, Ren X H. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

[23]

Xue T, Liu H, Zhang Y, Wu H, Wu P, He M. Synthesis of ZSM-5 with hierarchical porosity: In-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite. Microporous and Mesoporous Materials, 2017, 242: 190–199

[24]

Du S, Sun Q, Wang N, Chen X, Jia M, Yu J. Synthesis of hierarchical TS-1 zeolites with abundant and uniform intracrystalline mesopores and their highly efficient catalytic performance for oxidation desulfurization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7992–7998

[25]

Fang Y, Yang F, He X, Zhu X. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Frontiers of Chemical Science and Engineering, 2019, 13(3): 543–553

[26]

Petrov A W, Ferri D, Krumeich F, Nachtegaal M, van Bokhoven J A, Krocher O. Stable complete methane oxidation over palladium based zeolite catalysts. Nature Communications, 2018, 9(1): 2545–2553

[27]

Pastvova J, Kaucky D, Moravkova J, Rathousky J, Sklenak S, Vorokhta M, Brabec L, Pilar R, Jakubec I, Tabor E, Effect of enhanced accessibility of acid sites in micromesoporous mordenite zeolites on hydroisomerization of n-hexane. ACS Catalysis, 2017, 7(9): 5781–5795

[28]

Li J, Liu M, Guo X, Xu S, Wei Y, Liu Z, Song C. Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination-realumination process: A superior MTP catalyst. ACS Applied Materials & Interfaces, 2017, 9(31): 26096–26106

[29]

Schwanke A J, Pergher S, Diaz U, Corma A. The influence of swelling agents molecular dimensions on lamellar morphology of MWW-type zeolites active for fructose conversion. Microporous and Mesoporous Materials, 2017, 254: 17–27

[30]

Wang J, Zhong Z, Ding K, Zhang B, Deng A, Min M, Chen P, Ruan R. Successive desilication and dealumination of HZSM-5 in catalytic conversion of waste cooking oil to produce aromatics. Energy Conversion and Management, 2017, 147: 100–107

[31]

Wei Z, Xia T, Liu M, Cao Q, Xu Y, Zhu K, Zhu X. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460

[32]

Zhang Y, Luo P, Xu H, Han L, Wu P, Sun H, Che S. Hierarchical MFI zeolites with a single-crystalline sponge-like mesostructure. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(72): 19300–19308

[33]

Shen X, Mao W, Ma Y, Xu D, Wu P, Terasaki O, Han L, Che S. A hierarchical MFI zeolite with a two-dimensional square mesostructure. Angewandte Chemie International Edition, 2018, 130(3): 732–736

[34]

Soltanali S, Darian J T. Synthesis of mesoporous beta catalysts in the presence of carbon nanostructures as hard templates in MTO process. Microporous and Mesoporous Materials, 2019, 286: 169–175

[35]

Wang J, Yang M, Shang W, Su X, Hao Q, Chen H, Ma X. Synthesis, characterization and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16

[36]

Peng Z, Chen L, Sun M, Zhao H, Wang Z, Li Y, Li L, Zhou J, Liu Z, Su B. A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5(11): 2829–2835

[37]

Di Iorio J R, Gounder R. Controlling the isolation and pairing of aluminum in chabazite zeolites using mixtures of organic and inorganic structure-directing agents. Chemistry of Materials, 2016, 28(7): 2236–2247

[38]

Locus R, Verboekend D, Zhong R, Houthoofd K, Jaumann T, Oswald S, Giebeler L, Baron G, Sels B F. Enhanced acidity and accessibility in Al-MCM-41 through aluminum activation. Chemistry of Materials, 2016, 28(21): 7731–7743

[39]

Wang Q, Wang L, Wang H, Li Z, Zhang X, Zhang S, Zhou K. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts. Frontiers of Chemical Science and Engineering, 2011, 5(1): 79–88

[40]

Zhang X, Liu D, Xu D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687

[41]

Li B, Leng K, Zhang Y, Dynes J J, Wang J, Hu Y, Ma D, Shi Z, Zhu L, Zhang D, Metal-organic framework based upon the synergy of a brønsted acid framework and lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions. Journal of the American Chemical Society, 2015, 137(12): 4243–4248

[42]

Xu J, Wang Y, Feng W, Lin Y, Wang S. Effect of triethylamine treatment of titanium silicalite-1 on propylene epoxidation. Frontiers of Chemical Science and Engineering, 2014, 8(4): 478–487

[43]

Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045

[44]

Rhimi B, Mhamdi M, Kalevaru V N, Martin A. Synergy between vanadium and molybdenum in bimetallic ZSM-5 supported catalysts for ethylene ammoxidation. RSC Advances, 2016, 6(70): 65866–65878

[45]

Fu T, Ma Z, Wang Y, Shao J, Ma Q, Zhang C, Cui L, Li Z. Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesize nano-ZSM-5 catalyst for MTH reaction. Fuel Processing Technology, 2019, 194: 106–122

[46]

Haouas M, Taulelle F, Martineau C. Recent advances in application of 27Al NMR spectroscopy to materials science. Progress in Nuclear Magnetic Resonance Spectroscopy, 2016, 94-95: 11–36

[47]

Klinowski J. Applications of solid-state NMR for the study of molecular sieves. Analytica Chimica Acta, 1993, 283(3): 929–965

[48]

Nielsen M, Hafreager A, Brogaard R Y, De Wispelaere K, Falsig H, Beato P, Van Speybroeck V, Svelle S. Collective action of water molecules in zeolite dealumination. Catalysis Science & Technology, 2019, 9(14): 3721–3725

[49]

Maier S M, Jentys A, Lercher J A. Steaming of zeolite BEA and its effect on acidity: A comparative NMR and IR spectroscopic study. Journal of Physical Chemistry C, 2011, 115(16): 8005–8013

[50]

Fan Y, Bao X, Lin X, Shi G, Liu H. Acidity adjustment of HZSM-5 zeolites by dealumination and realumination with steaming and citric acid treatments. Journal of Physical Chemistry B, 2006, 110(31): 15411–15416

AI Summary AI Mindmap
PDF (2772KB)

Supplementary files

FCE-20011-OF-HY_suppl_1

4792

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/