SCRaMbLE drive application of synthetic yeast genome

Jin Jin, Yuan Ma, Duo Liu

PDF(62 KB)
PDF(62 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (4) : 832-834. DOI: 10.1007/s11705-018-1749-0
VIEWS & COMMENTS

SCRaMbLE drive application of synthetic yeast genome

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Jin Jin, Yuan Ma, Duo Liu. SCRaMbLE drive application of synthetic yeast genome. Front. Chem. Sci. Eng., 2018, 12(4): 832‒834 https://doi.org/10.1007/s11705-018-1749-0

References

[1]
Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016–1018
CrossRef Pubmed Google scholar
[2]
Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52–56
CrossRef Pubmed Google scholar
[3]
III Hutchison C A, Chuang R Y, Noskov V N, Assad-Garcia N, Deerinck T J, Ellisman M H, Gill J, Kannan K, Karas B J, Ma L, Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253
[4]
Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano M G, Moosburner M, Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353(6301): 819–822
CrossRef Pubmed Google scholar
[5]
Annaluru N, Muller H, Mitchell L A, Ramalingam S, Stracquadanio G, Richardson S M, Dymond J S, Kuang Z, Scheifele L Z, Cooper E M, Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344(6179): 55–58
CrossRef Pubmed Google scholar
[6]
Richardson S M, Mitchell L A, Stracquadanio G, Yang K, Dymond J S, DiCarlo J E, Lee D, Huang C L, Chandrasegaran S, Cai Y, Design of a synthetic yeast genome. Science, 2017, 355(6329): 1040–1044
CrossRef Pubmed Google scholar
[7]
Mitchell L A, Wang A, Stracquadanio G, Kuang Z, Wang X Y, Yang K, Richardson S, Martin J A, Zhao Y, Walker R, Synthesis, debugging, and effects of synthetic chromosome consolidation: SynVI and beyond. Science, 2017, 355(6329): eaaf4831
[8]
Shen Y, Wang Y, Chen T, Gao F, Gong J H, Abramczyk D, Walker R, Zhao H C, Chen S H, Liu W, Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355(6329): eaaf4791
[9]
Wu Y, Li B Z, Zhao M, Mitchell L A, Xie Z X, Lin Q H, Wang X, Xiao W H, Wang Y, Zhou X, Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355 (6329): eaaf4706
[10]
Xie Z X, Li B Z, Mitchell L A, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng B X, Liu H M, “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355 (6329): eaaf4704 1046
[11]
Zhang W M, Zhao G H, Luo Z Q, Lin Y C, Wang L H, Guo Y K, Wang A, Jiang S Y, Jiang Q W, Gong J H, Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 2017, 355 (6329): eaaf3981
[12]
Xie Z X, Liu D, Li B Z, Zhao M, Zeng B X, Wu Y, Shen Y, Lin T, Yang P, Dai J, Design and chemical synthesis of eukaryotic chromosomes. Chemical Society Reviews, 2017, 46(23): 7191–7207
CrossRef Pubmed Google scholar
[13]
Jia B, Wu Y, Li B Z, Mitchell L A, Liu H, Pan S, Wang J, Zhang H R, Jia N, Li B, Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 1933, 2018(9): 1–13
Pubmed
[14]
Wu Y, Zhu R Y, Mitchell L A, Ma L, Liu R, Zhao M. In vitro DNA SCRaMbLE. Nature Communications, 1935, 2018(9): 1–9
Pubmed
[15]
Shen M J, Wu Y, Yang K, Li Y X, Xu H, Zhang H R, Li X, Xiao W H, Zhou X, Mitchell L A, Heterozygous diploid and interspecies SCRaMbLEing. Nature Communications, 1934, 2018(9): 1–8
Pubmed
[16]
Ramy R E, Magroun N, Messadecq N, Gauthier L, Boussin F, Dantzer F. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nature Communications, 1932, 2018(9): 1–10
[17]
Luo Z Q, Wang L H, Wang Y, Zhang W M, Guo Y K, Shen Y, Jiang L H, Wu Q Y, Zhang C, Cai Y Z, Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nature Communications, 1930, 2018(9): 1–10
Pubmed
[18]
Liu W, Luo Z Q, Wang Y, Pham N T, Tuck L, Pérez-Pi I, Liu L Y, Shen Y, French C, Auer M, Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nature Communications, 1936, 2018(9): 1–12
Pubmed
[19]
Hochrein L, Mitchell L A, Schulz K, Messerschmidt K. Mueller-roeber B. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nature Communications, 1931, 2018(9): 1–10
[20]
Wang J, Jia B, Xie Z X, Yuan Y J. Improving prodeoxyviolacein production via Multiplex SCRaMbLE Iterative Cycles. Frontiers of Chemical Science and Engineering, 2018 (Online First), doi: 10.1007/s11705-018-1739-2

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(62 KB)

Accesses

Citations

Detail

Sections
Recommended

/