Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response
Yaodong Huang, Shuxue Liu, Zhuofeng Xie, Zipei Sun, Wei Chai, Wei Jiang
Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response
Two new series of 1,2,3-triazole derivatives, with and without iodo substitution, were synthesized and their gelation properties were measured. It was found that the iodo substitution at position 5 of triazole ring could greatly enhance the gelation ability. Scanning electron microscopy and X-ray diffraction reveal that the structures of the organogels from iodo and hydrogenous gelators are totally different. Iodo gels are selectively responsive to the stimuli of Hg2+, whereas hydrogenous gels can respond to Hg2+ and Cu2+. Moreover, the reversible gel-sol transition of hydrogenous gels can be controlled by redox reaction or tuned with suitable chemicals. The single crystal analysis of reference compound (C2) suggests that there are intermolecular and intramolecular non-classical hydrogen bonding interactions but no π-π interaction in hydrogenous gelator. The great difference between the two series of compounds results from the iodo effect and implies the existence of halogen bonding interaction in the iodo compounds.
organogelator / 1,2,3-triazole derivatives / self-assembly / halogen bonding / cation response
[1] |
Sung S, Park S, Lee W J, Son J, Kim C H, Kim Y, Noh D Y, Yoon M H. Low-voltage flexible organic electronics based on high-performance sol-gel titanium dioxide dielectric. ACS Applied Materials & Interfaces, 2015, 7(14): 7456–7461
CrossRef
Google scholar
|
[2] |
Das A, Ghosh S. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. Angewandte Chemie International Edition, 2014, 45(18): 2038–2054
CrossRef
Google scholar
|
[3] |
Babu S S, Praveen V K, Ajayaghosh A. Functional π-gelators and their applications. American Chemical Society, 2014, 114(4): 1973–2129
|
[4] |
Han J, Song J, Hao Z, Yu H, Han J. Self-assembly of Schiff base organogelator with enhanced fluorescence emission. Chinese Journal of Chemistry, 2015, 33(1): 137–140
CrossRef
Google scholar
|
[5] |
Choi T J, Chang J Y. Preparation of thermochromic polymer nanocomposite films from polymerizable organogels of oligothiophene-based organogelators. Macromolecular Research, 2016, 24(12): 1055–1061
CrossRef
Google scholar
|
[6] |
Lüer L, Rajendran S K, Stoll T, Ganzer L, Rehault J, Coles D M, Lidzey D, Virgili T, Cerullo G. Lévy defects in matrix-immobilized J aggregates: Tracing intra-and intersegmental exciton relaxation. Journal of Physical Chemistry Letters, 2017, 8(3): 547–552
CrossRef
Google scholar
|
[7] |
Kumar R J, MacDonald J M, Singh T B, Waddington L J, Holmes A B. Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. Journal of the American Chemical Society, 2011, 133(22): 8564–8573
CrossRef
Google scholar
|
[8] |
Kim H, Chang J Y. White light emission from a mixed organogel of lanthanide(III)-containing organogelators. RSC Advances, 2013, 3(6): 1774–1780
CrossRef
Google scholar
|
[9] |
Pang X, Yu X, Xie D, Li Y, Geng L, Ren J, Zhen X. Tunable multicolor emissions in monocomponent gel system by varying solvents, temperature and fluoride anion. Organic & Biomolecular Chemistry, 2016, 14(47): 11176–11182
CrossRef
Google scholar
|
[10] |
Sun J, Xue P, Sun J, Gong P, Wang P, Lu R. Strong blue emissive nanofibers constructed from benzothizole modified tert-butyl carbazole derivative for the detection of volatile acid vapors. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(34): 8888–8894
CrossRef
Google scholar
|
[11] |
Zhai Y, Chai W, Cao W W, Sun Z P, Huang Y D. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Frontiers of Chemical Science and Engineering, 2015, 9(4): 488–493
CrossRef
Google scholar
|
[12] |
Cheng H B, Li Z, Huang Y D, Liu L, Wu H C. A pillararene-based AIE-active supramolecular system for simultaneous detection and removal of mercury(II) in water. ACS Applied Materials & Interfaces, 2017, 9(13): 11889–11894
CrossRef
Google scholar
|
[13] |
Zhao Z, Lam J W Y, Tang B Z. Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter, 2013, 9(18): 4564–4579
CrossRef
Google scholar
|
[14] |
Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: From biomimetic chemistry to bio-inspired materials. Advanced Materials, 2013, 25(37): 5215–5256
CrossRef
Google scholar
|
[15] |
Piepenbrock M O M, Lloyd G O, Clarke N, Steed J W. Metal- and anion-binding supramolecular gels. Chemical Reviews, 2010, 110(4): 1960–2004
CrossRef
Google scholar
|
[16] |
Van Herrikhuyzen J, George S J, Vos M R J, Sommerdijk N A J M, Ajayaghosh A, Meskers S C J, Schenning A P H J. Self-assembled hybrid oligo(p-phenylenevinylene)-gold nanoparticle tapes. Angewandte Chemie, 2007, 46(11): 1825–1828
CrossRef
Google scholar
|
[17] |
Sugiyasu K, Fujita N, Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angewandte Chemie, 2004, 43(10): 1229–1233
CrossRef
Google scholar
|
[18] |
Suzuki M, Yumoto M, Kimura M, Shiraib H, Hanabusa K. Novel family of low molecular weight hydrogelators based on L-lysine derivatives. Chemical Communications, 2002, 33(8): 884–885
CrossRef
Google scholar
|
[19] |
Abdallah D J, Weiss R G. Organogels and low molecular-mass organic gelators. Advanced Materials, 2000, 12(17): 1237–1247
CrossRef
Google scholar
|
[20] |
Meazza L, Foster J A, Fucke K, Metrangolo P, Resnati G, Steed J W. Halogen-bonding-triggered supramolecular gel formation. Nature Chemistry, 2013, 5(1): 42–47
CrossRef
Google scholar
|
[21] |
Feng Y, Chen H, Liu Z X, He Y M, Fan Q H. A pronounced halogen effect on the organogelation properties of peripherally halogen functionalized poly(benzyl ether) dendrons. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(14): 4980–4990
CrossRef
Google scholar
|
[22] |
Bhattacharjee S, Bhattacharya S. Remarkable role of C–I···N halogen bonding in thixotropic ‘halo’gel formation. Langmuir, 2016, 32(17): 4270–4277
CrossRef
Google scholar
|
[23] |
Bertolani A, Pirrie L, Stefan L, Houbenov N, Haataja J S, Catalano L, Terraneo G, Giancane G, Valli L, Milani R, Ikkala O, Resnati G, Metrangolo P. Supramolecular amplification of amyloid self-assembly by iodination. Nature Communications, 2015, 6: 7574
CrossRef
Google scholar
|
[24] |
Huang Y, Zhang Y, Yuan Y, Cao W. Organogelators based on iodo 1,2,3-triazole functionalized with coumarin: Properties and gelator-solvent interaction. Tetrahedron, 2015, 71(14): 2124–2133
CrossRef
Google scholar
|
[25] |
Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561
CrossRef
Google scholar
|
[26] |
Huang Y D, Li H M, Li Z Y, Zhang Y, Cao W W, Wang L Y, Liu S X. Unusual C–I⋯O halogen bonding in triazole derivatives: Gelation solvents at two extremes of polarity and formation of superorganogels. Langmuir, 2017, 33(1): 311–321
CrossRef
Google scholar
|
[27] |
Wu Y M, Deng J, Li Y, Chen Q Y. Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazole via one-pot reaction promoted by copper(I) salt. Synthesis, 2005, 36(43): 1314–1318
CrossRef
Google scholar
|
[28] |
Schulze B, Schubert U S. Beyond click chemistry—supramolecular interactions of 1,2,3-triazoles. Chemical Society Reviews, 2014, 43(8): 2522–2571
CrossRef
Google scholar
|
[29] |
Janiak C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 2000, 32(11): 3885–3896
CrossRef
Google scholar
|
[30] |
Linse P. Orientation-averaged benzene-benzene potential of mean force in aqueous solution. Journal of the American Chemical Society, 1993, 115(19): 8793–8797
CrossRef
Google scholar
|
[31] |
Lai L L, Wang C H, Hsieh W P, Lin H C. Synthesis and characterization of liquid crystalline molecules containing the ouinoline unit. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 1996, 287(1): 177–181
|
[32] |
Bhalla V, Singh H, Kumar M, Prasad S K. Triazole-modified triphenylene derivative: Self-assembly and sensing applications. Langmuir, 2011, 27(24): 15275–15281
CrossRef
Google scholar
|
/
〈 | 〉 |