Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response

Yaodong Huang, Shuxue Liu, Zhuofeng Xie, Zipei Sun, Wei Chai, Wei Jiang

PDF(444 KB)
PDF(444 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 252-261. DOI: 10.1007/s11705-017-1683-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response

Author information +
History +

Abstract

Two new series of 1,2,3-triazole derivatives, with and without iodo substitution, were synthesized and their gelation properties were measured. It was found that the iodo substitution at position 5 of triazole ring could greatly enhance the gelation ability. Scanning electron microscopy and X-ray diffraction reveal that the structures of the organogels from iodo and hydrogenous gelators are totally different. Iodo gels are selectively responsive to the stimuli of Hg2+, whereas hydrogenous gels can respond to Hg2+ and Cu2+. Moreover, the reversible gel-sol transition of hydrogenous gels can be controlled by redox reaction or tuned with suitable chemicals. The single crystal analysis of reference compound (C2) suggests that there are intermolecular and intramolecular non-classical hydrogen bonding interactions but no π-π interaction in hydrogenous gelator. The great difference between the two series of compounds results from the iodo effect and implies the existence of halogen bonding interaction in the iodo compounds.

Graphical abstract

Keywords

organogelator / 1,2,3-triazole derivatives / self-assembly / halogen bonding / cation response

Cite this article

Download citation ▾
Yaodong Huang, Shuxue Liu, Zhuofeng Xie, Zipei Sun, Wei Chai, Wei Jiang. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response. Front. Chem. Sci. Eng., 2018, 12(2): 252‒261 https://doi.org/10.1007/s11705-017-1683-6

References

[1]
Sung S, Park S, Lee W J, Son J, Kim C H, Kim Y, Noh D Y, Yoon M H. Low-voltage flexible organic electronics based on high-performance sol-gel titanium dioxide dielectric. ACS Applied Materials & Interfaces, 2015, 7(14): 7456–7461
CrossRef Google scholar
[2]
Das A, Ghosh S. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. Angewandte Chemie International Edition, 2014, 45(18): 2038–2054
CrossRef Google scholar
[3]
Babu S S, Praveen V K, Ajayaghosh A. Functional π-gelators and their applications. American Chemical Society, 2014, 114(4): 1973–2129
[4]
Han J, Song J, Hao Z, Yu H, Han J. Self-assembly of Schiff base organogelator with enhanced fluorescence emission. Chinese Journal of Chemistry, 2015, 33(1): 137–140
CrossRef Google scholar
[5]
Choi T J, Chang J Y. Preparation of thermochromic polymer nanocomposite films from polymerizable organogels of oligothiophene-based organogelators. Macromolecular Research, 2016, 24(12): 1055–1061
CrossRef Google scholar
[6]
Lüer L, Rajendran S K, Stoll T, Ganzer L, Rehault J, Coles D M, Lidzey D, Virgili T, Cerullo G. Lévy defects in matrix-immobilized J aggregates: Tracing intra-and intersegmental exciton relaxation. Journal of Physical Chemistry Letters, 2017, 8(3): 547–552
CrossRef Google scholar
[7]
Kumar R J, MacDonald J M, Singh T B, Waddington L J, Holmes A B. Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. Journal of the American Chemical Society, 2011, 133(22): 8564–8573
CrossRef Google scholar
[8]
Kim H, Chang J Y. White light emission from a mixed organogel of lanthanide(III)-containing organogelators. RSC Advances, 2013, 3(6): 1774–1780
CrossRef Google scholar
[9]
Pang X, Yu X, Xie D, Li Y, Geng L, Ren J, Zhen X. Tunable multicolor emissions in monocomponent gel system by varying solvents, temperature and fluoride anion. Organic & Biomolecular Chemistry, 2016, 14(47): 11176–11182
CrossRef Google scholar
[10]
Sun J, Xue P, Sun J, Gong P, Wang P, Lu R. Strong blue emissive nanofibers constructed from benzothizole modified tert-butyl carbazole derivative for the detection of volatile acid vapors. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(34): 8888–8894
CrossRef Google scholar
[11]
Zhai Y, Chai W, Cao W W, Sun Z P, Huang Y D. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Frontiers of Chemical Science and Engineering, 2015, 9(4): 488–493
CrossRef Google scholar
[12]
Cheng H B, Li Z, Huang Y D, Liu L, Wu H C. A pillararene-based AIE-active supramolecular system for simultaneous detection and removal of mercury(II) in water. ACS Applied Materials & Interfaces, 2017, 9(13): 11889–11894
CrossRef Google scholar
[13]
Zhao Z, Lam J W Y, Tang B Z. Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter, 2013, 9(18): 4564–4579
CrossRef Google scholar
[14]
Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: From biomimetic chemistry to bio-inspired materials. Advanced Materials, 2013, 25(37): 5215–5256
CrossRef Google scholar
[15]
Piepenbrock M O M, Lloyd G O, Clarke N, Steed J W. Metal- and anion-binding supramolecular gels. Chemical Reviews, 2010, 110(4): 1960–2004
CrossRef Google scholar
[16]
Van Herrikhuyzen J, George S J, Vos M R J, Sommerdijk N A J M, Ajayaghosh A, Meskers S C J, Schenning A P H J. Self-assembled hybrid oligo(p-phenylenevinylene)-gold nanoparticle tapes. Angewandte Chemie, 2007, 46(11): 1825–1828
CrossRef Google scholar
[17]
Sugiyasu K, Fujita N, Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angewandte Chemie, 2004, 43(10): 1229–1233
CrossRef Google scholar
[18]
Suzuki M, Yumoto M, Kimura M, Shiraib H, Hanabusa K. Novel family of low molecular weight hydrogelators based on L-lysine derivatives. Chemical Communications, 2002, 33(8): 884–885
CrossRef Google scholar
[19]
Abdallah D J, Weiss R G. Organogels and low molecular-mass organic gelators. Advanced Materials, 2000, 12(17): 1237–1247
CrossRef Google scholar
[20]
Meazza L, Foster J A, Fucke K, Metrangolo P, Resnati G, Steed J W. Halogen-bonding-triggered supramolecular gel formation. Nature Chemistry, 2013, 5(1): 42–47
CrossRef Google scholar
[21]
Feng Y, Chen H, Liu Z X, He Y M, Fan Q H. A pronounced halogen effect on the organogelation properties of peripherally halogen functionalized poly(benzyl ether) dendrons. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(14): 4980–4990
CrossRef Google scholar
[22]
Bhattacharjee S, Bhattacharya S. Remarkable role of C–I···N halogen bonding in thixotropic ‘halo’gel formation. Langmuir, 2016, 32(17): 4270–4277
CrossRef Google scholar
[23]
Bertolani A, Pirrie L, Stefan L, Houbenov N, Haataja J S, Catalano L, Terraneo G, Giancane G, Valli L, Milani R, Ikkala O, Resnati G, Metrangolo P. Supramolecular amplification of amyloid self-assembly by iodination. Nature Communications, 2015, 6: 7574
CrossRef Google scholar
[24]
Huang Y, Zhang Y, Yuan Y, Cao W. Organogelators based on iodo 1,2,3-triazole functionalized with coumarin: Properties and gelator-solvent interaction. Tetrahedron, 2015, 71(14): 2124–2133
CrossRef Google scholar
[25]
Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561
CrossRef Google scholar
[26]
Huang Y D, Li H M, Li Z Y, Zhang Y, Cao W W, Wang L Y, Liu S X. Unusual C–I⋯O halogen bonding in triazole derivatives: Gelation solvents at two extremes of polarity and formation of superorganogels. Langmuir, 2017, 33(1): 311–321
CrossRef Google scholar
[27]
Wu Y M, Deng J, Li Y, Chen Q Y. Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazole via one-pot reaction promoted by copper(I) salt. Synthesis, 2005, 36(43): 1314–1318
CrossRef Google scholar
[28]
Schulze B, Schubert U S. Beyond click chemistry—supramolecular interactions of 1,2,3-triazoles. Chemical Society Reviews, 2014, 43(8): 2522–2571
CrossRef Google scholar
[29]
Janiak C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 2000, 32(11): 3885–3896
CrossRef Google scholar
[30]
Linse P. Orientation-averaged benzene-benzene potential of mean force in aqueous solution. Journal of the American Chemical Society, 1993, 115(19): 8793–8797
CrossRef Google scholar
[31]
Lai L L, Wang C H, Hsieh W P, Lin H C. Synthesis and characterization of liquid crystalline molecules containing the ouinoline unit. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 1996, 287(1): 177–181
[32]
Bhalla V, Singh H, Kumar M, Prasad S K. Triazole-modified triphenylene derivative: Self-assembly and sensing applications. Langmuir, 2011, 27(24): 15275–15281
CrossRef Google scholar

Acknowledgment

This work was supported by the Natural Science Foundation of Tianjin (No. 15JCYBJC20100).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-017-1683-6 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(444 KB)

Accesses

Citations

Detail

Sections
Recommended

/