Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers

Peyman P. Selakjani , Majid Peyravi , Mohsen Jahanshahi , Hamzeh Hoseinpour , Ali S. Rad , Soodabeh Khalili

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 174 -183.

PDF (470KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 174 -183. DOI: 10.1007/s11705-017-1670-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers

Author information +
History +
PDF (470KB)

Abstract

Polysulfone (PSf) membranes were modified by either a new organic modifier (sulfonated poly(ether sulfide sulfone), SPESS) or a traditional modifier (rice hulk). These membranes were further reinforced with either multi-walled carbon nanotubes (MWCNTs) or silica nanoparticles. Having a dye rejection of 98.46%, the reinforced membranes increased more than 50% in strength but no change in solution flux was observed. The morphological and roughness studies were conducted using scanning electron microscopy and atomic force microscopy. Moreover, the PSF membranes were also characterized by differential scanning calorimetry. Modifying the membranes with organic modifier or nanofiller increases the glass transition temperature (Tg). The highest Tg and strength were observed for the PSf-SPESS-MWCNT membrane. SPESS decreases surface roughness but MWCNT increases roughness on the nanoscale. All membranes show a bimodal pore size distribution, whereas the PSf-SPESS-MWCNT membrane exhibits a relatively uniform distribution of macroscopic and microscopic pores.

Graphical abstract

Keywords

polysulfone membrane / mechanical properties / micro- and nano-modification / binary and ternary system / dye removal

Cite this article

Download citation ▾
Peyman P. Selakjani, Majid Peyravi, Mohsen Jahanshahi, Hamzeh Hoseinpour, Ali S. Rad, Soodabeh Khalili. Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers. Front. Chem. Sci. Eng., 2018, 12(1): 174-183 DOI:10.1007/s11705-017-1670-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ng L YLeo  C PMohammad  A W. Optimizing the incorporation of silica nanoparticles in polysulfone/poly(vinyl alcohol) membranes with response surface methodology. Journal of Applied Polymer Science2011121(3): 1804–1814

[2]

Zhao SWang  ZWang J Yang SWang  S. PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. Journal of Membrane Science2011376(1-2): 83–95

[3]

Shen CMeng  QZhang G. Chemical modification of polysulfone membrane by polyethylene glycol for resisting drug adsorption and self-assembly of hepatocytes. Journal of Membrane Science2011369(1-2): 474–481

[4]

Padaki MIsloor  A MWanichapichart  P. Polysulfone/N-phthaloylchitosan novel composite membranes for salt rejection application. Desalination2011279(1-3): 409–414

[5]

Shi LWang  RCao Y Liang D T Tay J H. Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene)(PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science2008315(1-2): 195–204

[6]

Rafiq SMan  ZMaulud A Muhammad N Maitra S. Effect of varying solvents compositions on morphology and gas permeation properties on membranes blends for CO2 separation from natural gas. Journal of Membrane Science2011378(1-2): 444–452

[7]

Barth CGoncalves  MPires A Roeder J Wolf B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science2000169(2): 287–299

[8]

Ionita MPandele  A MCrica  LPilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites. Part B, Engineering201459: 133–139

[9]

Vilakati G DHoek  E MMamba  B B. Probing the mechanical and thermal properties of polysulfone membranes modified with synthetic and natural polymer additives. Polymer Testing201434: 202–210

[10]

Bai HZhou  YZhang L. Morphology and mechanical properties of a new nanocrystalline cellulose/polysulfone composite membrane. Advances in Polymer Technology201534(1): 21471–21478

[11]

Peyravi MRahimpour  AJahanshahi M. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. Journal of Membrane Science2012423: 225–237

[12]

Samal S KDash  MChiellini F Wang XChiellini  EDeclercq H A Kaplan D L. Silk/chitosan biohybrid hydrogels and scaffolds via green technology. RSC Advances20144(96): 53547–53556

[13]

Yu KLiu  YLeng J. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Advances20144(6): 2961–2968

[14]

Misra ATyagi  P KRai  PMisra D. FTIR spectroscopy of multiwalled carbon nanotubes: A simple approach to study the nitrogen doping. Journal of Nanoscience and Nanotechnology20077(6): 1820–1823

[15]

Lehman J HTerrones  MMansfield E Hurst K E Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon201149(8): 2581–2602

[16]

Pouresmaeel-Selkjani P Jahanshahi M Peyravi M. Mechanical, thermal, and morphological properties of nanoporous reinforced polysulfone membranes. High Performance Polymers201729(7): 759–771 doi:10.1177/0954008316656742

[17]

Mohammadi-rovshandeh J Pouresmaeel-selakjani P Davachi S M Kaffashi B Hassani A Bahmeyi A. Effect of lignin removal on mechanical, thermal, and morphological properties of polylactide/starch/rice husk blend used in food packaging. Journal of Applied Polymer Science2014131(22): 41095–41102

[18]

Ding ZZhong  LWang X Zhang L. Effect of lignin-cellulose nanofibrils on the hydrophilicity and mechanical properties of polyethersulfone ultrafiltration membranes. High Performance Polymers201628(10): 1192–1200

[19]

Davachi S MBakhtiari  SPouresmaeel-selakjani PMohammadi-rovshandeh JKaffashi B Davoodi S Yousefi A. Investigating the effect of treated rice straw in PLLA/starch composite: Mechanical, thermal, rheological, and morphological study. Advances in Polymer Technology2015, DOI: 10.1002/adv.21634 

[20]

Wen XLin  YHan C Zhang K Ran XLi  YDong L. Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. Journal of Applied Polymer Science2009114(6): 3379–3388

[21]

Liu CTobin  R. Effects of interadsorbate interactions on surface resistivity: Oxygen on sulfur-predosed Cu (100). Journal of Chemical Physics2008128(24): 244702

[22]

Zhang XGong  ZLi J Lu T. Intermolecular sulfur∙∙∙oxygen interactions: Theoretical and statistical investigations. Journal of Chemical Information and Modeling201555(10): 2138–2153

[23]

Bouajila JDole  PJoly C Limare A. Some laws of a lignin plasticization. Journal of Applied Polymer Science2006102(2): 1445–1451

[24]

Sivashinsky NTanny  G. Ionic heterogeneities in sulfonated polysulfone films. Journal of Applied Polymer Science198328(10): 3235–3245

[25]

Peinemann K V Abetz V Simon P F. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials20076(12): 992–996

[26]

Nonjola P TMathe  M KModibedi  R M. Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles. International Journal of Hydrogen Energy201338(12): 5115–5121

[27]

Shirazi YGhadimi  AMohammadi T. Recovery of alcohols from water using polydimethylsiloxane-silica nanocomposite membranes: Characterization and pervaporation performance. Journal of Applied Polymer Science2012124(4): 2871–2882

[28]

Marchese JAnson  MOchoa N Prádanos P Palacio L Hernández A. Morphology and structure of ABS membranes filled with two different activated carbons. Chemical Engineering Science200661(16): 5448–5454

[29]

Yan LLi  Y SXiang  C BXianda  S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. Journal of Membrane Science2006276(1-2): 162–167

[30]

Rahimpour AMadaeni  S SMansourpanah  Y. Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. Journal of Membrane Science2010364(1-2): 380–388

[31]

Barzin JSadatnia  B. Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents. Journal of Membrane Science2008325(1): 92–97

[32]

Senthilkumar SRajesh  SJayalakshmi A Aishwarya G Mohan D R. Preparation and performance evaluation of poly(ether-imide) incorporated polysulfone hemodialysis membranes. Journal of Polymer Research201219(6): 1–11

[33]

Peyravi MRahimpour  AJahanshahi M. Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production. Journal of Membrane Science2015473: 72–84

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (470KB)

2047

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/