Cystine oligomers successfully attached to peptide cysteine-rich fibrils

Christian Bortolini, Mingdong Dong

PDF(419 KB)
PDF(419 KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 99-102. DOI: 10.1007/s11705-016-1554-6
COMMUNICATION
COMMUNICATION

Cystine oligomers successfully attached to peptide cysteine-rich fibrils

Author information +
History +

Abstract

Amyloid peptides are renowned to be related to neurodegenerative diseases, however, a fruitful avenue is to employ them as high-performance nanomaterials. These materials benefit from the intrinsic outstanding mechanical robustness of the amyloid backbone made of b-strands. In this work, we exploited amyloid-like fibrils as functional material to attach pristine L-cysteine aggregates (cystine oligomers) and gold nanoparticles, without the need of templating compounds. This work will open new avenues on functional materials design and their realisation.

Graphical abstract

Keywords

cysteine / peptide fibrils / gold nanoparticles / amyloids / oligomers / nanomaterials

Cite this article

Download citation ▾
Christian Bortolini, Mingdong Dong. Cystine oligomers successfully attached to peptide cysteine-rich fibrils. Front. Chem. Sci. Eng., 2016, 10(1): 99‒102 https://doi.org/10.1007/s11705-016-1554-6

References

[1]
Bortolini C, Liu L, Gronewold T M A, Wang C, Besenbacher F, Dong M D. The position of hydrophobic residues tunes peptide self-assembly. Soft Matter, 2014, 10(31): 5656–5661
CrossRef Google scholar
[2]
Paramonov S E, Jun H W, Hartgerink J D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing. Journal of the American Chemical Society, 2006, 128(22): 7291–7298
CrossRef Google scholar
[3]
Liu L, Busuttil K, Zhang S, Yang Y L, Wang C, Besenbacher F, Dong M D. The role of self-assembling polypeptides in building nanomaterials. Physical Chemistry Chemical Physics, 2011, 13(39): 17435–17444
CrossRef Google scholar
[4]
Huang J F, Sun I W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Advanced Functional Materials, 2005, 15(6): 989–994
CrossRef Google scholar
[5]
Bortolini C, Liu L, Li Z S, Thomsen K, Wang C, Besenbacher F, Dong M D. Identification of cysteine-rich peptide-fiber by specific cysteine-Au nanoparticles binding on fiber surface. Advanced Materials Interfaces, 2014, 9: 1400133
CrossRef Google scholar
[6]
Djalali R, Chen Y, Matsui H. Au nanowire fabrication from sequenced histidine-rich peptide. Journal of the American Chemical Society, 2002, 124(46): 13660–13661
CrossRef Google scholar
[7]
Banerjee I A, Yu L T, Matsui H. Cu nanocrystal growth onpeptide nanotubes by biomineralization: Size control of cunanocrystals by tuning peptide conformation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25): 14678–14682
CrossRef Google scholar
[8]
Kasotakis E, Mossou E, Adler-Abramovich L, Mitchell E P, Forsyth V T, Gazit E, Mitraki A. Design of metal-binding sites onto self-assembled peptide fibrils. Biopolymers, 2009, 92(3): 164–172
CrossRef Google scholar
[9]
Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends in Pharmacological Sciences, 2000, 21(3): 99–103
CrossRef Google scholar
[10]
Richard J P, Melikov K, Vives E, Ramos C, Verbeure B, Gait M J, Chernomordik L V, Lebleu B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 2002, 2 78(1): 585–590
CrossRef Google scholar
[11]
Walker L C, Jucker M. Amyloid by default. Nature Neuroscience, 2011, 14(6): 669–670
CrossRef Google scholar
[12]
Dobson C M. Protein folding and misfolding. Nature, 2003, 426(6968): 884–890
CrossRef Google scholar
[13]
Knowles T P J, Buehler M J. Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology, 2011, 6(8): 469–479
CrossRef Google scholar
[14]
Shorter J, Lindquist S. Prions as adaptive conduits of memory and inheritance. Nature Reviews. Genetics, 2005, 6(6): 435–450
CrossRef Google scholar
[15]
Hauser C A E, Maurer-Stroh S, Martins I C. Amyloid-based nanosensors and nanodevices. Chemical Society Reviews, 2014, 43(15): 5326–5345
CrossRef Google scholar
[16]
Knowles T P, Fitzpatrick A W, Meehan S, Mott H R, Vendruscolo M, Dobson C M, Welland M E. Role of intermolecular forces in defining material properties of protein nanofibrils. Science, 2007, 318(5858): 1900–1903
CrossRef Google scholar
[17]
Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Doeli H, Schubert D, Riek R. 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(48): 17342–17347
CrossRef Google scholar
[18]
Bortolini C, Jones N C, Hoffmann S V, Wang C, Besenbacher F, Dong M D. Mechanical properties of amyloid-like fibrils defined by secondary structures. Nanoscale, 2015, 7(17): 7745–7752
CrossRef Google scholar
[19]
Scheibel T, Parthasarathy R, Sawicki G, Lin X M, Jaeger H, Lindquist S L. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4527–4532
CrossRef Google scholar
[20]
Miles A J, Janes R W, Brown A, Clarke D T, Sutherland J C, Tao Y, Wallace B A, Hoffmann S V. Light flux density threshold at which protein denaturation isinduced by synchrotron radiation circular dichroismbeamlines. Journal of Synchrotron Radiation, 2008, 15(4): 420–422
CrossRef Google scholar
[21]
Miles A J, Hoffmann S V, Tao Y, Janes R W, Wallace B A. Synchrotron radiation circular dichroism (SRCD) spectroscopy: New beamlines and new applications in biology. Spectroscopy-an International Journal, 2007, 21(5-6): 245–255
CrossRef Google scholar
[22]
Whitmore L, Wallace B A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 2004, 32: 668–673
CrossRef Google scholar
[23]
Whitmore L, Wallace B A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 2008, 89(5): 392–400
CrossRef Google scholar

Acknowledgements

This work was supported by grants from the Danish National Research Foundation and the Danish Research Agency through support for the iNANO Center and the Danish Council for Strategic Research to iDEA project. M. D. acknowledges a STENO Grant for the Danish Research Council and the VKR Young Investigator Program in Denmark. C.B. acknowledges the Lundbeck Foundation for the post-doctoral fellowship.
Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-016-1554-6 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(419 KB)

Accesses

Citations

Detail

Sections
Recommended

/