Cystine oligomers successfully attached to peptide cysteine-rich fibrils

Christian Bortolini , Mingdong Dong

Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 99 -102.

PDF (419KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 99 -102. DOI: 10.1007/s11705-016-1554-6
COMMUNICATION
COMMUNICATION

Cystine oligomers successfully attached to peptide cysteine-rich fibrils

Author information +
History +
PDF (419KB)

Abstract

Amyloid peptides are renowned to be related to neurodegenerative diseases, however, a fruitful avenue is to employ them as high-performance nanomaterials. These materials benefit from the intrinsic outstanding mechanical robustness of the amyloid backbone made of b-strands. In this work, we exploited amyloid-like fibrils as functional material to attach pristine L-cysteine aggregates (cystine oligomers) and gold nanoparticles, without the need of templating compounds. This work will open new avenues on functional materials design and their realisation.

Graphical abstract

Keywords

cysteine / peptide fibrils / gold nanoparticles / amyloids / oligomers / nanomaterials

Cite this article

Download citation ▾
Christian Bortolini, Mingdong Dong. Cystine oligomers successfully attached to peptide cysteine-rich fibrils. Front. Chem. Sci. Eng., 2016, 10(1): 99-102 DOI:10.1007/s11705-016-1554-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bortolini CLiu LGronewold T M AWang CBesenbacher FDong M D. The position of hydrophobic residues tunes peptide self-assembly. Soft Matter201410(31): 5656–5661

[2]

Paramonov S EJun H WHartgerink J D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing. Journal of the American Chemical Society2006128(22): 7291–7298

[3]

Liu LBusuttil KZhang SYang Y LWang CBesenbacher FDong M D. The role of self-assembling polypeptides in building nanomaterials. Physical Chemistry Chemical Physics201113(39): 17435–17444

[4]

Huang J FSun I W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Advanced Functional Materials200515(6): 989–994

[5]

Bortolini CLiu LLi Z SThomsen KWang CBesenbacher FDong M D. Identification of cysteine-rich peptide-fiber by specific cysteine-Au nanoparticles binding on fiber surface. Advanced Materials Interfaces20149: 1400133

[6]

Djalali RChen YMatsui H. Au nanowire fabrication from sequenced histidine-rich peptide. Journal of the American Chemical Society2002124(46): 13660–13661

[7]

Banerjee I AYu L TMatsui H. Cu nanocrystal growth onpeptide nanotubes by biomineralization: Size control of cunanocrystals by tuning peptide conformation. Proceedings of the National Academy of Sciences of the United States of America2003100(25): 14678–14682

[8]

Kasotakis EMossou EAdler-Abramovich LMitchell E PForsyth V TGazit EMitraki A. Design of metal-binding sites onto self-assembled peptide fibrils. Biopolymers200992(3): 164–172

[9]

Lindgren MHallbrink MProchiantz ALangel U. Cell-penetrating peptides. Trends in Pharmacological Sciences200021(3): 99–103

[10]

Richard J PMelikov KVives ERamos CVerbeure BGait M JChernomordik L VLebleu B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry2002, 2 78(1): 585–590

[11]

Walker L CJucker M. Amyloid by default. Nature Neuroscience201114(6): 669–670

[12]

Dobson C M. Protein folding and misfolding. Nature2003426(6968): 884–890

[13]

Knowles T P JBuehler M J. Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology20116(8): 469–479

[14]

Shorter JLindquist S. Prions as adaptive conduits of memory and inheritance. Nature Reviews. Genetics20056(6): 435–450

[15]

Hauser C A EMaurer-Stroh SMartins I C. Amyloid-based nanosensors and nanodevices. Chemical Society Reviews201443(15): 5326–5345

[16]

Knowles T PFitzpatrick A WMeehan SMott H RVendruscolo MDobson C MWelland M E. Role of intermolecular forces in defining material properties of protein nanofibrils. Science2007318(5858): 1900–1903

[17]

Luhrs TRitter CAdrian MRiek-Loher DBohrmann BDoeli HSchubert DRiek R. 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proceedings of the National Academy of Sciences of the United States of America2005102(48): 17342–17347

[18]

Bortolini CJones N CHoffmann S VWang CBesenbacher FDong M D. Mechanical properties of amyloid-like fibrils defined by secondary structures. Nanoscale20157(17): 7745–7752

[19]

Scheibel TParthasarathy RSawicki GLin X MJaeger HLindquist S L. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proceedings of the National Academy of Sciences of the United States of America2003100(8): 4527–4532

[20]

Miles A JJanes R WBrown AClarke D TSutherland J CTao YWallace B AHoffmann S V. Light flux density threshold at which protein denaturation isinduced by synchrotron radiation circular dichroismbeamlines. Journal of Synchrotron Radiation200815(4): 420–422

[21]

Miles A JHoffmann S VTao YJanes R WWallace B A. Synchrotron radiation circular dichroism (SRCD) spectroscopy: New beamlines and new applications in biology. Spectroscopy-an International Journal200721(5-6): 245–255

[22]

Whitmore LWallace B A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research200432: 668–673

[23]

Whitmore LWallace B A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers200889(5): 392–400

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (419KB)

Supplementary files

FCE-15043-of-BC_suppl_1

2756

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/