Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery

Jennica L. Zaro, Wei-Chiang Shen

PDF(845 KB)
PDF(845 KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 407-427. DOI: 10.1007/s11705-015-1538-y
REVIEW ARTICLE
REVIEW ARTICLE

Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery

Author information +
History +

Abstract

Over the past few decades, cell penetrating peptides (CPPs) have become an important class of drug carriers for small molecules, proteins, genes and nanoparticle systems. CPPs represent a very diverse set of short peptide sequences (10‒30 amino acids), generally classified as cationic or amphipathic, with various mechanisms in cellular internalization. In this review, a more comprehensive assessment of the chemical structural characteristics, including net cationic charge, hydrophobicity and helicity was assembled for a large set of commonly used CPPs, and compared to results from numerous in vivo drug delivery studies. This detailed information can aid in the design and selection of effective CPPs for use as transport carriers in the delivery of different types of drug for therapeutic applications.

Graphical abstract

Keywords

cell penetrating peptides / amphipathic peptides / drug delivery

Cite this article

Download citation ▾
Jennica L. Zaro, Wei-Chiang Shen. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Front. Chem. Sci. Eng., 2015, 9(4): 407‒427 https://doi.org/10.1007/s11705-015-1538-y

References

[1]
Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55(6): 1179–1188
CrossRef Google scholar
[2]
Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6): 1189–1193
CrossRef Google scholar
[3]
Patel L N, Zaro J L, Shen W C. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 2007, 24(11): 1977–1992
CrossRef Google scholar
[4]
Vasconcelos L, Madani F, Arukuusk P, Parnaste L, Graslund A, Langel U. Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. Biochimica et Biophysica Acta, 2014, 1838(12): 3118–3129
CrossRef Google scholar
[5]
Grdisa M. The delivery of biologically active (therapeutic) peptides and proteins into cells. Current Medicinal Chemistry, 2011, 18(9): 1373–1379
CrossRef Google scholar
[6]
Dietz G P, Bahr M. Delivery of bioactive molecules into the cell: The Trojan horse approach. Molecular and Cellular Neurosciences, 2004, 27(2): 85–131
CrossRef Google scholar
[7]
Copolovici D M, Langel K, Eriste E, Langel U. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano, 2014, 8(3): 1972–1994
CrossRef Google scholar
[8]
Bechinger B, Aisenbrey C. The polymorphic nature of membrane-active peptides from biophysical and structural investigations. Current Protein & Peptide Science, 2012, 13(7): 602–610
CrossRef Google scholar
[9]
El-Andaloussi S, Holm T, Langel U. Cell-penetrating peptides: Mechanisms and applications. Current Pharmaceutical Design, 2005, 11(28): 3597–3611
CrossRef Google scholar
[10]
Walrant A, Bechara C, Alves I D, Sagan S. Molecular partners for interaction and cell internalization of cell-penetrating peptides: How identical are they? Nanomedicine (London), 2012, 7(1): 133–143
CrossRef Google scholar
[11]
Lewis H D, Husain A, Donnelly R J, Barlos D, Riaz S, Ginjupalli K, Shodeinde A, Barton B E. Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines. BMC Biotechnology, 2010, 10(1): 79
CrossRef Google scholar
[12]
Ragin A D, Morgan R A, Chmielewski J. Cellular import mediated by nuclear localization signal peptide sequences. Chemistry & Biology, 2002, 9(8): 943–948
CrossRef Google scholar
[13]
Sadler K, Eom K D, Yang J L, Dimitrova Y, Tam J P. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry, 2002, 41(48): 14150–14157
CrossRef Google scholar
[14]
Jha D, Mishra R, Gottschalk S, Wiesmuller K H, Ugurbil K, Maier M E, Engelmann J. CyLoP-1: A novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjugate Chemistry, 2011, 22(3): 319–328
CrossRef Google scholar
[15]
De Coupade C, Fittipaldi A, Chagnas V, Michel M, Carlier S, Tasciotti E, Darmon A, Ravel D, Kearsey J, Giacca M, Cailler F. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochemical Journal, 2005, 390(2): 407–418
CrossRef Google scholar
[16]
Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. Journal of Biological Chemistry, 2001, 276(8): 5836–5858
CrossRef Google scholar
[17]
Nakase I, Hirose H, Tanaka G, Tadokoro A, Kobayashi S, Takeuchi T, Futaki S. Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Molecular Therapy, 2009, 17(11): 1868–1876
CrossRef Google scholar
[18]
Langedijk J P, Olijhoek T, Schut D, Autar R, Meloen R H. New transport peptides broaden the horizon of applications for peptidic pharmaceuticals. Molecular Diversity, 2004, 8(2): 101–111
CrossRef Google scholar
[19]
Bong D T, Steinem C, Janshoff A, Johnson J E, Reza Ghadiri M. A highly membrane-active peptide in Flock House virus: Implications for the mechanism of nodavirus infection. Chemistry & Biology, 1999, 6(7): 473–481
CrossRef Google scholar
[20]
Bertrand J R, Malvy C, Auguste T, Toth G K, Kiss-Ivankovits O, Illyes E, Hollosi M, Bottka S, Laczko I. Synthesis and studies on cell-penetrating peptides. Bioconjugate Chemistry, 2009, 20(7): 1307–1314
CrossRef Google scholar
[21]
Trehin R, Krauss U, Beck-Sickinger A G, Merkle H P, Nielsen H M. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models. Pharmaceutical Research, 2004, 21(7): 1248–1256
CrossRef Google scholar
[22]
Cascales L, Henriques S T, Kerr M C, Huang Y H, Sweet M J, Daly N L, Craik D J. Identification and characterization of a new family of cell-penetrating peptides: Cyclic cell-penetrating peptides. Journal of Biological Chemistry, 2011, 286(42): 36932–36943
CrossRef Google scholar
[23]
Thoren P E, Persson D, Isakson P, Goksor M, Onfelt A, Norden B. Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochemical and Biophysical Research Communications, 2003, 307(1): 100–107
CrossRef Google scholar
[24]
Fischer P M, Zhelev N Z, Wang S, Melville J E, Fahraeus R, Lane D P. Structure-activity relationship of truncated and substituted analogues of the intracellular delivery vector Penetratin. Journal of Peptide Research, 2000, 55(2): 163–172
CrossRef Google scholar
[25]
Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. Journal of Biological Chemistry, 1996, 271(30): 18188–18193
CrossRef Google scholar
[26]
El-Andaloussi S, Johansson H J, Holm T, Langel U. A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Molecular Therapy, 2007, 15(10): 1820–1826
CrossRef Google scholar
[27]
Duchardt F, Ruttekolk I R, Verdurmen W P, Lortat-Jacob H, Burck J, Hufnagel H, Fischer R, van den Heuvel M, Lowik D W, Vuister G W, Ulrich A, de Waard M, Brock R. A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. Journal of Biological Chemistry, 2009, 284(52): 36099–36108
CrossRef Google scholar
[28]
Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M. Structural requirements for cellular uptake of alpha-helical amphipathic peptides. Journal of Peptide Science, 1999, 5(4): 185–194
CrossRef Google scholar
[29]
Jones S W, Christison R, Bundell K, Voyce C J, Brockbank S M, Newham P, Lindsay M A. Characterisation of cell-penetrating peptide-mediated peptide delivery. British Journal of Pharmacology, 2005, 145(8): 1093–1102
CrossRef Google scholar
[30]
Verdurmen W P, Bovee-Geurts P H, Wadhwani P, Ulrich A S, Hallbrink M, van Kuppevelt T H, Brock R. Preferential uptake of L-versus D-amino acid cell-penetrating peptides in a cell type-dependent manner. Chemistry & Biology, 2011, 18(8): 1000–1010
CrossRef Google scholar
[31]
Drin G, Cottin S, Blanc E, Rees A R, Temsamani J. Studies on the internalization mechanism of cationic cell-penetrating peptides. Journal of Biological Chemistry, 2003, 278(33): 31192–31201
CrossRef Google scholar
[32]
Kilk K, Magzoub M, Pooga M, Eriksson L E, Langel U, Graslund A. Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain. Comparison with the penetratin peptide. Bioconjugate Chemistry, 2001, 12(6): 911–916
CrossRef Google scholar
[33]
Han K, Jeon M J, Kim K A, Park J, Choi S Y. Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and Engrailed proteins. Molecules and Cells, 2000, 10(6): 728–732
CrossRef Google scholar
[34]
Elmquist A, Hansen M, Langel U. Structure-activity relationship study of the cell-penetrating peptide pVEC. Biochimica et Biophysica Acta, 2006, 1758(6): 721–729
CrossRef Google scholar
[35]
Wender P A, Mitchell D J, Pattabiraman K, Pelkey E T, Steinman L, Rothbard J B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13003–13008
CrossRef Google scholar
[36]
Kamide K, Nakakubo H, Uno S, Fukamizu A. Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications. International Journal of Molecular Medicine, 2010, 25(1): 41–51
[37]
Takeshima K, Chikushi A, Lee K K, Yonehara S, Matsuzaki K. Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. Journal of Biological Chemistry, 2003, 278(2): 1310–1315
CrossRef Google scholar
[38]
Richard J P, Melikov K, Vives E, Ramos C, Verbeure B, Gait M J, Chernomordik L V, Lebleu B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 2003, 278(1): 585–590
CrossRef Google scholar
[39]
Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry, 1997, 272(25): 16010–16017
CrossRef Google scholar
[40]
Hariton-Gazal E, Feder R, Mor A, Graessmann A, Brack-Werner R, Jans D, Gilon C, Loyter A. Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals. Biochemistry, 2002, 41(29): 9208–9214
CrossRef Google scholar
[41]
Patel L N, Wang J, Kim K J, Borok Z, Crandall E D, Shen W C. Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin. Molecular Pharmaceutics, 2009, 6(2): 492–503
CrossRef Google scholar
[42]
Zaro J L, Shen W C. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochemical and Biophysical Research Communications, 2003, 307(2): 241–247
CrossRef Google scholar
[43]
Zaro J L, Shen W C. Evidence that membrane transduction of oligoarginine does not require vesicle formation. Experimental Cell Research, 2005, 307(1): 164–173
CrossRef Google scholar
[44]
Park Y J, Chang L C, Liang J F, Moon C, Chung C P, Yang V C. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. FASEB Journal, 2005, 19(11): 1555–1557
[45]
Wu F L, Yeh T H, Chen Y L, Chiu Y C, Cheng J C, Wei M F, Shen L J. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. Molecular Pharmaceutics, 2014, 11(8): 2777–2786
CrossRef Google scholar
[46]
Yang Z, Jiang Z, Cao Z, Zhang C, Gao D, Luo X, Zhang X, Luo H, Jiang Q, Liu J. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency. Nanoscale, 2014, 6(17): 10193–10206
CrossRef Google scholar
[47]
Morris M C, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 2001, 19(12): 1173–1176
CrossRef Google scholar
[48]
Kurzawa L, Pellerano M, Morris M C. PEP and CADY-mediated delivery of fluorescent peptides and proteins into living cells. Biochimica et Biophysica Acta, 2010, 1798(12): 2274–2285
CrossRef Google scholar
[49]
Lin Y Z, Yao S Y, Veach R A, Torgerson T R, Hawiger J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. Journal of Biological Chemistry, 1995, 270(24): 14255–14258
CrossRef Google scholar
[50]
Soomets U, Lindgren M, Gallet X, Hallbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, Brasseur R, Langel U. Deletion analogues of transportan. Biochimica et Biophysica Acta, 2000, 1467(1): 165–176
CrossRef Google scholar
[51]
Kobayashi S, Nakase I, Kawabata N, Yu H H, Pujals S, Imanishi M, Giralt E, Futaki S. Cytosolic targeting of macromolecules using a pH-dependent fusogenic peptide in combination with cationic liposomes. Bioconjugate Chemistry, 2009, 20(5): 953–959
CrossRef Google scholar
[52]
El-Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: Ways to overcome endosomal entrapment. AAPS Journal, 2009, 11(1): 13–22
CrossRef Google scholar
[53]
Wyman T B, Nicol F, Zelphati O, Scaria P V, Plank C, Szoka F C J. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997, 36(10): 3008–3017
CrossRef Google scholar
[54]
Wada S, Tsuda H, Okada T, Urata H. Cellular uptake of aib-containing amphipathic helix peptide. Bioorganic & Medicinal Chemistry Letters, 2011, 21(19): 5688–5691
CrossRef Google scholar
[55]
Zaro J L, Vekich J E, Tran T, Shen W C. Nuclear localization of cell-penetrating peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells. Molecular Pharmaceutics, 2009, 6(2): 337–344
CrossRef Google scholar
[56]
Gomez J A, Chen J, Ngo J, Hajkova D, Yeh I J, Gama V, Miyagi M, Matsuyama S. Cell-penetrating penta-peptides (CPP5s): Measurement of cell entry and protein-transduction activity. Pharmaceuticals (Basel, Switzerland), 2010, 3(12): 3594–3613
CrossRef Google scholar
[57]
Fretz M M, Penning N A, Al-Taei S, Futaki S, Takeuchi T, Nakase I, Storm G, Jones A T. Temperature, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochemical Journal, 2007, 403(2): 335–342
CrossRef Google scholar
[58]
Zaro J L, Rajapaksa T E, Okamoto C T, Shen W C. Membrane transduction of oligoarginine in HeLa cells is not mediated by macropinocytosis. Molecular Pharmaceutics, 2006, 3(2): 181–186
CrossRef Google scholar
[59]
Cohen-Avrahami M, Libster D, Aserin A, Garti N. Sodium diclofenac and cell-penetrating peptides embedded in H(II) mesophases: Physical characterization and delivery. Journal of Physical Chemistry B, 2011, 115(34): 10189–10197
CrossRef Google scholar
[60]
Sheng J, Oyler G, Zhou B, Janda K, Shoemaker C B. Identification and characterization of a novel cell-penetrating peptide. Biochemical and Biophysical Research Communications, 2009, 382(2): 236–240
CrossRef Google scholar
[61]
Shen W C, Ryser H J. Conjugation of poly-L-lysine to albumin and horseradish peroxidase: A novel method of enhancing the cellular uptake of proteins. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(4): 1872–1876
CrossRef Google scholar
[62]
Ryser H J, Shen W C, Merk F B. Membrane transport of macromolecules: New carrier functions of proteins and poly(amino acids). Life Sciences, 1978, 22(13–15): 1253–1260
CrossRef Google scholar
[63]
Pardridge W M, Buciak J L, Kang Y S, Boado R J. Protamine-mediated transport of albumin into brain and other organs of the rat. Binding and endocytosis of protamine-albumin complex by microvascular endothelium. Journal of Clinical Investigation, 1993, 92(5): 2224–2229
CrossRef Google scholar
[64]
Wu G Y, Wu C H. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry, 1988, 27(3): 887–892
CrossRef Google scholar
[65]
Cotten M, Langle-Rouault F, Kirlappos H, Wagner E, Mechtler K, Zenke M, Beug H, Birnstiel M L. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(11): 4033–4037
CrossRef Google scholar
[66]
Ryser H J, Shen W C. Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(8): 3867–3870
CrossRef Google scholar
[67]
Shen W C, Ryser H J. Poly (L-lysine) and poly (D-lysine) conjugates of methotrexate: Different inhibitory effect on drug resistant cells. Molecular Pharmacology, 1979, 16(2): 614–622
[68]
Ryser H J, Shen W C. Conjugation of methotrexate to poly (L-lysine) as a potential way to overcome drug resistance. Cancer, 1980, 45(5 Suppl): 1207–1211
CrossRef Google scholar
[69]
Han K, Jeon M J, Kim S H, Ki D, Bahn J H, Lee K S, Park J, Choi S Y. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Molecules and Cells, 2001, 12(2): 267–271
[70]
Rothbard J B, Jessop T C, Lewis R S, Murray B A, Wender P A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. Journal of the American Chemical Society, 2004, 126(31): 9506–9507
CrossRef Google scholar
[71]
Goncalves E, Kitas E, Seelig J. Binding of oligoarginine to membrane lipids and heparan sulfate: Structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry, 2005, 44(7): 2692–2702
CrossRef Google scholar
[72]
Gelman R A, Glaser D N, Blackwell J. Interaction between chondroitin-6-sulfate and poly-L-arginine in aqueous solution. Biopolymers, 1973, 12(6): 1223–1232
CrossRef Google scholar
[73]
Richard J P, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik L V. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. Journal of Biological Chemistry, 2005, 280(15): 15300–15306
CrossRef Google scholar
[74]
Jiao C Y, Delaroche D, Burlina F, Alves I D, Chassaing G, Sagan S. Translocation and endocytosis for cell-penetrating peptide internalization. Journal of Biological Chemistry, 2009, 284(49): 33957–33965
CrossRef Google scholar
[75]
Zaro J L, Shen W C. Cytosolic delivery of a p16-peptide oligoarginine conjugate for inhibiting proliferation of MCF7 cells. Journal of Controlled Release, 2005, 108(2–3): 409–417
CrossRef Google scholar
[76]
Fei L, Ren L, Zaro J L, Shen W C. The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. Journal of Drug Targeting, 2011, 19(8): 675–680
CrossRef Google scholar
[77]
Law M, Jafari M, Chen P. Physicochemical characterization of siRNA-peptide complexes. Biotechnology Progress, 2008, 24(4): 957–963
CrossRef Google scholar
[78]
Pace C N, Scholtz J M. A helix propensity scale based on experimental studies of peptides and proteins. Biophysical Journal, 1998, 75(1): 422–442, 7
CrossRef Google scholar
[79]
Hong M, Su Y. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Protein Science, 2011, 20(4): 641–655
CrossRef Google scholar
[80]
Di Pisa M, Chassaing G, Swiecicki J M. Translocation mechanism(s) of cell-penetrating peptides: Biophysical studies using artificial membrane bilayers. Biochemistry, 2015, 54(2): 194–207
CrossRef Google scholar
[81]
Gelman R A, Blackwell J. Heparin-polypeptide interactions in aqueous solution. Archives of Biochemistry and Biophysics, 1973, 159(1): 427–433
CrossRef Google scholar
[82]
Shen W C, Ryser H J. Poly(L-lysine) has different membrane transport and drug-carrier properties when complexed with heparin. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(12): 7589–7593
CrossRef Google scholar
[83]
Su Y, Doherty T, Waring A J, Ruchala P, Hong M. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR. Biochemistry, 2009, 48(21): 4587–4595
CrossRef Google scholar
[84]
Clark K S, Svetlovics J, McKeown A N, Huskins L, Almeida P F. What determines the activity of antimicrobial and cytolytic peptides in model membranes. Biochemistry, 2011, 50(37): 7919–7932
CrossRef Google scholar
[85]
Alves I D, Goasdoue N, Correia I, Aubry S, Galanth C, Sagan S, Lavielle S, Chassaing G. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochimica et Biophysica Acta, 2008, 1780(7–8): 948–959
CrossRef Google scholar
[86]
Derossi D, Joliot A H, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 1994, 269(14): 10444–10450
[87]
Kaplan I M, Wadia J S, Dowdy S F. Cationic TAT peptide transduction domain enters cells by macropinocytosis. Journal of Controlled Release, 2005, 102(1): 247–253
CrossRef Google scholar
[88]
Wadia J S, Stan R V, Dowdy S F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine, 2004, 10(3): 310–315
CrossRef Google scholar
[89]
Yesylevskyy S, Marrink S J, Mark A E. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Biophysical Journal, 2009, 97(1): 40–49
CrossRef Google scholar
[90]
Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F, Giacca M. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. Journal of Biological Chemistry, 2003, 278(36): 34141–34149
CrossRef Google scholar
[91]
Ferrari M E, Nguyen C M, Zelphati O, Tsai Y, Felgner P L. Analytical methods for the characterization of cationic lipid-nucleic acid complexes. Human Gene Therapy, 1998, 9(3): 341–351
CrossRef Google scholar
[92]
Qian Z, LaRochelle J R, Jiang B, Lian W, Hard R L, Selner N G, Luechapanichkul R, Barrios A M, Pei D. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry, 2014, 53(24): 4034–4046
CrossRef Google scholar
[93]
Lundberg P, El-Andaloussi S, Sutlu T, Johansson H, Langel U. Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB Journal, 2007, 21(11): 2664–2671
CrossRef Google scholar
[94]
Yang S T, Zaitseva E, Chernomordik L V, Melikov K. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophysical Journal, 2010, 99(8): 2525–2533
CrossRef Google scholar
[95]
Deshayes S, Plenat T, Charnet P, Divita G, Molle G, Heitz F. Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochimica et Biophysica Acta, 2006, 1758(11): 1846–1851
CrossRef Google scholar
[96]
Kenien R, Shen W C, Zaro J L. Vesicle-to-cytosol transport of disulfide-linked cargo mediated by an amphipathic cell-penetrating peptide. Journal of Drug Targeting, 2012, 20(9): 793–800
CrossRef Google scholar
[97]
Kenien R, Zaro J L, Shen W C. MAP-mediated nuclear delivery of a cargo protein. Journal of Drug Targeting, 2012, 20(4): 329–337
CrossRef Google scholar
[98]
Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta, 1999, 1462(1–2): 55–70
CrossRef Google scholar
[99]
Matsuzaki K, Sugishita K, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Letters, 1999, 449(2–3): 221–224
CrossRef Google scholar
[100]
Yang L, Harroun T A, Weiss T M, Ding L, Huang H W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001, 81(3): 1475–1485
CrossRef Google scholar
[101]
Berlose J P, Convert O, Derossi D, Brunissen A, Chassaing G. Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. European Journal of Biochemistry, 1996, 242(2): 372–386
CrossRef Google scholar
[102]
Mor A, Nguyen V H, Delfour A, Migliore-Samour D, Nicolas P. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry, 1991, 30(36): 8824–8830
CrossRef Google scholar
[103]
Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry, 1996, 35(35): 11361–11368
CrossRef Google scholar
[104]
Matsuzaki K, Murase O, Fujii N, Miyajima K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry, 1995, 34(19): 6521–6526
CrossRef Google scholar
[105]
Ludtke S J, He K, Heller W T, Harroun T A, Yang L, Huang H W. Membrane pores induced by magainin. Biochemistry, 1996, 35(43): 13723–13728
CrossRef Google scholar
[106]
Brauner J W, Mendelsohn R, Prendergast F G. Attenuated total reflectance Fourier transform infrared studies of the interaction of melittin, two fragments of melittin, and δ-hemolysin with phosphatidylcholines. Biochemistry, 1987, 26(25): 8151–8158
CrossRef Google scholar
[107]
Frey S, Tamm L K. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophysical Journal, 1991, 60(4): 922–930
CrossRef Google scholar
[108]
Mueller J, Kretzschmar I, Volkmer R, Boisguerin P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjugate Chemistry, 2008, 19(12): 2363–2374
CrossRef Google scholar
[109]
Saar K, Lindgren M, Hansen M, Eiriksdottir E, Jiang Y, Rosenthal-Aizman K, Sassian M, Langel U. Cell-penetrating peptides: A comparative membrane toxicity study. Analytical Biochemistry, 2005, 345(1): 55–65
CrossRef Google scholar
[110]
El-Andaloussi S, Jarver P, Johansson H J, Langel U. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. Biochemical Journal, 2007, 407(2): 285–292
CrossRef Google scholar
[111]
Rothbard J B, Jessop T C, Lewis R S, Murray B A, Wender P A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. Journal of the American Chemical Society, 2004, 126(31): 9506–9507
CrossRef Google scholar
[112]
Zaro J L, Shen W C. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochemical and Biophysical Research Communications, 2003, 307(2): 241–247
CrossRef Google scholar
[113]
Zaro J L, Shen W C. Evidence that membrane transduction of oligoarginine does not require vesicle formation. Experimental Cell Research, 2005, 307(1): 164–173
CrossRef Google scholar
[114]
Patel L N, Zaro J L, Shen W C. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 2007, 24(11): 1977–1992
CrossRef Google scholar
[115]
Sawant R, Torchilin V. Intracellular transduction using cell-penetrating peptides. Molecular BioSystems, 2010, 6(4): 628–640
CrossRef Google scholar
[116]
Schmidt N, Mishra A, Lai G H, Wong G C L. Arginine-rich cell-penetrating peptides. FEBS Letters, 2010, 584(9): 1806–1813
CrossRef Google scholar
[117]
Wender P A, Galliher W C, Goun E A, Jones L R, Pillow T H. The design of guanidinium-rich transporters and their internalization mechanisms. Advanced Drug Delivery Reviews, 2008, 60(4–5): 452–472
CrossRef Google scholar
[118]
Ziegler A. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Advanced Drug Delivery Reviews, 2008, 60(4–5): 580–597
CrossRef Google scholar
[119]
Jiao C Y, Delaroche D, Burlina F, Alves I D, Chassaing G, Sagan S. Translocation and endocytosis for cell-penetrating peptideinternalization. Journal of Biological Chemistry, 2009, 284(49): 33957–33965
CrossRef Google scholar
[120]
Herbig M E, Weller K M, Merkle H P. Reviewing biophysical and cell biological methodologies in cell-penetrating peptide (CPP) research. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24(3): 203–255
CrossRef Google scholar
[121]
Shen W C. Acid-sensitive dissociation between poly(lysine) and histamine-modified poly(glutamate) as a model for drug-releasing from carriers in endosomes. Biochimica et Biophysica Acta, 1990, 1034(1): 122–124
CrossRef Google scholar
[122]
Fei L, Yap L P, Conti P S, Shen W C, Zaro J L. Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide. Biomaterials, 2014, 35(13): 4082–4087
CrossRef Google scholar
[123]
Sun C, Shen W C, Tu J, Zaro J L. Interaction between cell-penetrating peptides and acid-sensitive anionic oligopeptides as a model for the design of targeted drug carriers. Molecular Pharmaceutics, 2014, 11(5): 1583–1590
CrossRef Google scholar
[124]
Olson E S, Aguilera T A, Jiang T, Ellies L G, Nguyen Q T, Wong E H, Gross L A, Tsien R Y. In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integrative Biology: Quantitative Biosciences from Nano to Macro, 2009, 1(5–6): 382–393
CrossRef Google scholar
[125]
Savariar E N, Felsen C N, Nashi N, Jiang T, Ellies L G, Steinbach P, Tsien R Y, Nguyen Q T. Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides. Cancer Research, 2013, 73(2): 855–864
CrossRef Google scholar
[126]
Weinstain R, Savariar E N, Felsen C N, Tsien R Y. In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. Journal of the American Chemical Society, 2014, 136(3): 874–877
CrossRef Google scholar
[127]
Lee S H, Castagner B, Leroux J C. Is there a future for cell-penetrating peptides in oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(1): 5–11
CrossRef Google scholar
[128]
Crombez L, Aldrian-Herrada G, Konate K, Nguyen Q N, McMaster G K, Brasseur R, Heitz F, Divita G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Molecular Therapy, 2009, 17(1): 95–103
CrossRef Google scholar
[129]
Dubikovskaya E A, Thorne S H, Pillow T H, Contag C H, Wender P A. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12128–12133
CrossRef Google scholar
[130]
Liu H, Zhang W, Ma L, Fan L, Gao F, Ni J, Wang R. The improved blood-brain barrier permeability of endomorphin-1 using the cell-penetrating peptide synB3 with three different linkages. International Journal of Pharmaceutics, 2014, 476(1–2): 1–8
CrossRef Google scholar
[131]
Hauff S J, Raju S C, Orosco R K, Gross A M, Diaz-Perez J A, Savariar E, Nashi N, Hasselman J, Whitney M, Myers J N, Lippman S M, Tsien R Y, Ideker T, Nguyen Q T. Matrix-metalloproteinases in head and neck carcinoma-cancer genome atlas analysis and fluorescence imaging in mice. Otolaryngology- Head and Neck Surgery, 2014, 151(4): 612–618
CrossRef Google scholar
[132]
Gotanda Y, Wei F Y, Harada H, Ohta K, Nakamura K, Tomizawa K, Ushijima K. Efficient transduction of 11 poly-arginine peptide in an ischemic lesion of mouse brain. Journal of Stroke and Cerebrovascular Diseases, 2014, 23(8): 2023–2030
CrossRef Google scholar
[133]
van Duijnhoven S M, Robillard M S, Hermann S, Kuhlmann M T, Schafers M, Nicolay K, Grull H. Imaging of MMP activity in postischemic cardiac remodeling using radiolabeled MMP-2/9 activatable peptide probes. Molecular Pharmaceutics, 2014, 11(5): 1415–1423
CrossRef Google scholar
[134]
Neundorf I, Rennert R, Franke J, Kozle I, Bergmann R. Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides. Bioconjugate Chemistry, 2008, 19(8): 1596–1603
CrossRef Google scholar
[135]
Weiss H M, Wirz B, Schweitzer A, Amstutz R, Rodriguez Perez M I, Andres H, Metz Y, Gardiner J, Seebach D. ADME investigations of unnatural peptides: Distribution of a 14C-labeled β 3-octaarginine in rats. Chemistry & Biodiversity, 2007, 4(7): 1413–1437
CrossRef Google scholar
[136]
Sehgal I, Sibrian-Vazquez M, Vicente M G. Photoinduced cytotoxicity and biodistribution of prostate cancer cell-targeted porphyrins. Journal of Medicinal Chemistry, 2008, 51(19): 6014–6020
CrossRef Google scholar
[137]
Felsen C N, Savariar E N, Whitney M, Tsien R Y. Detection and monitoring of localized matrix metalloproteinase upregulation in a murine model of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2014, 306(8): L764–L774
CrossRef Google scholar
[138]
Michiue H, Sakurai Y, Kondo N, Kitamatsu M, Bin F, Nakajima K, Hirota Y, Kawabata S, Nishiki T, Ohmori I, Tomizawa K, Miyatake S, Ono K, Matsui H. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials, 2014, 35(10): 3396–3405
CrossRef Google scholar
[139]
Temming R P, Eggermont L, van Eldijk M B, van Hest J C, van Delft F L. N-Terminal dual protein functionalization by strain-promoted alkyne-nitrone cycloaddition. Organic & Biomolecular Chemistry, 2013, 11(17): 2772–2779
CrossRef Google scholar
[140]
Shen W C, Ryser H J. Cis-Aconityl spacer between daunomycin and macromolecular carriers: A model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochemical and Biophysical Research Communications, 1981, 102(3): 1048–1054
CrossRef Google scholar
[141]
Walker L, Perkins E, Kratz F, Raucher D. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. International Journal of Pharmaceutics, 2012, 436(1–2): 825–832
CrossRef Google scholar
[142]
Nakase I, Konishi Y, Ueda M, Saji H, Futaki S. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. Journal of Controlled Release, 2012, 159(2): 181–188
CrossRef Google scholar
[143]
Vives E. Present and future of cell-penetrating peptide mediated delivery systems: Is the Trojan horse too wild to go only to Troy? Journal of Controlled Release, 2005, 109(1–3): 77–85
CrossRef Google scholar
[144]
Vives E, Schmidt J, Pelegrin A. Cell-penetrating and cell-targeting peptides in drug delivery. Biochimica et Biophysica Acta, 2008, 1786(2): 126–138
[145]
Heitz F, Morris M C, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. British Journal of Pharmacology, 2009, 157(2): 195–206
CrossRef Google scholar
[146]
Sarko D, Beijer B, Garcia B R, Nothelfer E M, Leotta K, Eisenhut M, Altmann A, Haberkorn U, Mier W. The pharmacokinetics of cell-penetrating peptides. Molecular Pharmaceutics, 2010, 7(6): 2224–2231
CrossRef Google scholar
[147]
Hamann P R, Hinman L M, Beyer C F, Lindh D, Upeslacis J, Flowers D A, Bernstein I. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjugate Chemistry, 2002, 13(1): 40–46
CrossRef Google scholar
[148]
Anderson D C, Nichols E, Manger R, Woodle D, Barry M, Fritzberg A R. Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide. Biochemical and Biophysical Research Communications, 1993, 194(2): 876–884
CrossRef Google scholar
[149]
Trudel D, Fradet Y, Meyer F, Harel F, Tetu B. Significance of MMP-2 expression in prostate cancer: An immunohistochemical study. Cancer Research, 2003, 63(23): 8511–8515
[150]
Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and-9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 2005, 87(3–4): 287–297
CrossRef Google scholar
[151]
Gerweck L E, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Research, 1996, 56(6): 1194–1198
[152]
Getzenberg R H, Coffey D S, DeWeese T L. Hyperthermic biology and cancer therapies a hypothesis for the “Lance Armstrong effect”. Journal of the American Medical Association, 2006, 296(4): 445–448
CrossRef Google scholar
[153]
Denko N, Cairns R, Papandreou I. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Molecular Cancer Research, 2006, 4(2): 61–70
CrossRef Google scholar
[154]
Crisp J L, Savariar E N, Glasgow H L, Ellies L G, Whitney M A, Tsien R Y. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Molecular Cancer Therapeutics, 2014, 13(6): 1514–1525
CrossRef Google scholar
[155]
Nguyen Q T, Olson E S, Aguilera T A, Jiang T, Scadeng M, Ellies L G, Tsien R Y. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4317–4322
CrossRef Google scholar
[156]
van Duijnhoven S M, Robillard M S, Nicolay K, Grull H. Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. Journal of Nuclear Medicine, 2011, 52(2): 279–286
CrossRef Google scholar
[157]
Zaro J L, Fei L, Shen W C. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. Journal of Controlled Release, 2012, 158(3): 357–361
CrossRef Google scholar
[158]
Zhu L, Kate P, Torchilin V P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano, 2012, 6(4): 3491–3498
CrossRef Google scholar
[159]
Apte A, Koren E, Koshkaryev A, Torchilin V P. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biology & Therapy, 2014, 15(1): 69–80
CrossRef Google scholar
[160]
Leader B, Baca Q J, Golan D E. Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 2008, 7(1): 21–39
CrossRef Google scholar
[161]
He H, Sheng J, David A E, Kwon Y M, Zhang J, Huang Y, Wang J, Yang V C. The use of low molecular weight protamine chemical chimera to enhance monomeric insulin intestinal absorption. Biomaterials, 2013, 34(31): 7733–7743
CrossRef Google scholar
[162]
Liang J F, Yang V C. Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochemical and Biophysical Research Communications, 2005, 335(3): 734–738
CrossRef Google scholar
[163]
Liu E, Sheng J, Ye J, Wang Y, Gong J, Yang V C, Wang J, He H. CPP mediated insulin delivery: Current status and promising future. Current Pharmaceutical Biotechnology, 2014, 15(3): 240–255
CrossRef Google scholar
[164]
Fei L. Cell Penetrating Peptide-Based Drug Delivery System for Targeting Mildly Acidic pH. Dissertation for the Doctoral Degree. California: University of Southern California, 2014
[165]
Chen X, Zaro J L, Shen W C. Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 2013, 65(10): 1357–1369
CrossRef Google scholar
[166]
Almeida P F. Membrane-active peptides: Binding, translocation, and flux in lipid vesicles. Biochimica et Biophysica Acta, 2014, 1838(9): 2216–2227
CrossRef Google scholar
[167]
Shin M C, Zhang J, Min K A, Lee K, Moon C, Balthasar J P, Yang V C. Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy. Journal of Controlled Release, 2014, 194: 197–210
CrossRef Google scholar
[168]
Xu J, Xiang Q, Su J, Yang P, Zhang Q, Su Z, Xiao F, Huang Y. Evaluation of the safety and brain-related tissues distribution characteristics of TAT-HaFGF via intranasal administration. Biological & Pharmaceutical Bulletin, 2014, 37(7): 1149–1157
CrossRef Google scholar
[169]
Cai S R, Xu G, Becker-Hapak M, Ma M, Dowdy S F, McLeod H L. The kinetics and tissue distribution of protein transduction in mice. European Journal of Pharmaceutical Sciences, 2006, 27(4): 311–319
CrossRef Google scholar
[170]
Cerchietti L C, Yang S N, Shaknovich R, Hatzi K, Polo J M, Chadburn A, Dowdy S F, Melnick A. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood, 2009, 113(15): 3397–3405
CrossRef Google scholar
[171]
Bowne W B, Michl J, Bluth M H, Zenilman M E, Pincus M R. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. Cancer Therapy, 2007, 5B: 331–344
[172]
Kwon M K, Nam J O, Park R W, Lee B H, Park J Y, Byun Y R, Kim S Y, Kwon I C, Kim I S. Antitumor effect of a transducible fusogenic peptide releasing multiple proapoptotic peptides by caspase-3. Molecular Cancer Therapeutics, 2008, 7(6): 1514–1522
CrossRef Google scholar
[173]
Tan M, Lan K H, Yao J, Lu C H, Sun M, Neal C L, Lu J, Yu D. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Research, 2006, 66(7): 3764–3772
CrossRef Google scholar
[174]
Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, Omata M. Cutting edge: The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. Journal of Immunology, 2007, 179(5): 2681–2685
CrossRef Google scholar
[175]
Ghosh A, Roy A, Liu X, Kordower J H, Mufson E J, Hartley D M, Ghosh S, Mosley R L, Gendelman H E, Pahan K. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18754–18759
CrossRef Google scholar
[176]
Hotchkiss R S, McConnell K W, Bullok K, Davis C G, Chang K C, Schwulst S J, Dunne J C, Dietz G P, Bahr M, McDunn J E, Karl I E, Wagner T H, Cobb J P, Coopersmith C M, Piwnica-Worms D. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. Journal of Immunology (Baltimore, MD.: 1950), 2006, 176(9): 5471–5477
CrossRef Google scholar
[177]
McCusker C T, Wang Y, Shan J, Kinyanjui M W, Villeneuve A, Michael H, Fixman E D. Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. Journal of Immunology, 2007, 179(4): 2556–2564
CrossRef Google scholar
[178]
Walker L R, Ryu J S, Perkins E, McNally L R, Raucher D. Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer. Drug Design, Development and Therapy, 2014, 8: 1649–1658
CrossRef Google scholar
[179]
Qiu X, Johnson J R, Wilson B S, Gammon S T, Piwnica-Worms D, Barnett E M. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe. PLoS One, 2014, 9(2): e88855
CrossRef Google scholar
[180]
He X H, Yan X T, Wang Y L, Wang C Y, Zhang Z Z, Zhan J. Transduced PEP-1-heme oxygenase-1 fusion protein protects against intestinal ischemia/reperfusion injury. Journal of Surgical Research, 2014, 187(1): 77–84
CrossRef Google scholar
[181]
He X H, Wang Y, Yan X T, Wang Y L, Wang C Y, Zhang Z Z, Li H, Jiang H X. Transduction of PEP-1-heme oxygenase-1 fusion protein reduces myocardial ischemia/reperfusion injury in rats. Journal of Cardiovascular Pharmacology, 2013, 62(5): 436–442
CrossRef Google scholar
[182]
McCarthy H O, McCaffrey J, McCrudden C M, Zholobenko A, Ali A A, McBride J W, Massey A S, Pentlavalli S, Chen K H, Cole G, Loughran S P, Dunne N J, Donnelly R F, Kett V L, Robson T. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. Journal of Controlled Release, 2014, 189: 141–149
CrossRef Google scholar
[183]
Wang H, Wang H, Liang J, Jiang Y, Guo Q, Peng H, Xu Q, Huang Y. Cell-penetrating apoptotic peptide/p53 DNA nanocomplex as adjuvant therapy for drug-resistant breast cancer. Molecular Pharmaceutics, 2014, 11(10): 3352–3360
CrossRef Google scholar
[184]
Hu Y, Xu B, Ji Q, Shou D, Sun X, Xu J, Gao J, Liang W. A mannosylated cell-penetrating peptide-graft-polyethylenimine as a gene delivery vector. Biomaterials, 2014, 35(13): 4236–4246
CrossRef Google scholar
[185]
Wang H X, Yang X Z, Sun C Y, Mao C Q, Zhu Y H, Wang J. Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials, 2014, 35(26): 7622–7634
CrossRef Google scholar
[186]
Nielsen E J, Yoshida S, Kamei N, Iwamae R, Khafagy E S, Olsen J, Rahbek U L, Pedersen B L, Takayama K, Takeda-Morishita M. Khafagy el S, Olsen J, Rahbek U L, Pedersen B L, Takayama K, Takeda-Morishita M. in vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. Journal of Controlled Release, 2014, 189: 19–24
CrossRef Google scholar
[187]
Manosroi J, Lohcharoenkal W, Gotz F, Werner R G, Manosroi W, Manosroi A. Novel application of polioviral capsid: Development of a potent and prolonged oral calcitonin using polioviral binding ligand and Tat peptide. Drug Development and Industrial Pharmacy, 2014, 40(8): 1092–1100
CrossRef Google scholar
[188]
Wiethoff C M, Middaugh C R. Barriers to nonviral gene delivery. Journal of Pharmaceutical Sciences, 2003, 92(2): 203–217
CrossRef Google scholar
[189]
Nam H Y, Kim J, Kim S, Yockman J W, Kim S W, Bull D A. Cell penetrating peptide conjugated bioreducible polymer for siRNA delivery. Biomaterials, 2011, 32(22): 5213–5222
CrossRef Google scholar
[190]
Mo R H, Zaro J L, Shen W C. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Molecular Pharmaceutics, 2012, 9(2): 299–309
CrossRef Google scholar
[191]
Margus H, Padari K, Pooga M. Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Molecular Therapy, 2012, 20(3): 525–533
CrossRef Google scholar
[192]
Amidon G L, Lee H J. Absorption of peptide and peptidomimetic drugs. Annual Review of Pharmacology and Toxicology, 1994, 34(1): 321–341
CrossRef Google scholar
[193]
Farkhani S M, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 2014, 57: 78–94
CrossRef Google scholar
[194]
Cleal K, He L, Watson P D, Jones A T. Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles. Current Pharmaceutical Design, 2013, 19(16): 2878–2894
CrossRef Google scholar
[195]
Zhang B, Zhang Y, Liao Z, Jiang T, Zhao J, Tuo Y, She X, Shen S, Chen J, Zhang Q, Jiang X, Hu Y, Pang Z. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials, 2015, 36: 98–109
CrossRef Google scholar
[196]
Mei L, Zhang Q, Yang Y, He Q, Gao H. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. International Journal of Pharmaceutics, 2014, 474(1–2): 95–102
CrossRef Google scholar
[197]
Fan T, Chen C, Guo H, Xu J, Zhang J, Zhu X, Yang Y, Zhou Z, Li L, Huang Y. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88(2): 518–528
CrossRef Google scholar
[198]
Huang A, Su Z, Li S, Sun M, Xiao Y, Ping Q, Deng Y. Oral absorption enhancement of salmon calcitonin by using both N-trimethyl chitosan chloride and oligoarginines-modified liposomes as the carriers. Drug Delivery, 2014, 21(5): 388–396
CrossRef Google scholar
[199]
Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Molecular Pharmaceutics, 2014, 11(8): 2755–2763
CrossRef Google scholar
[200]
Yang Y, Yang Y, Xie X, Cai X, Zhang H, Gong W, Wang Z, Mei X. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials, 2014, 35(14): 4368–4381
CrossRef Google scholar
[201]
Zong T, Mei L, Gao H, Cai W, Zhu P, Shi K, Chen J, Wang Y, Gao F, He Q. Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Molecular Pharmaceutics, 2014, 11(7): 2346–2357
CrossRef Google scholar
[202]
Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, Zhang Q, Gao H, Zhang Z, He Q. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials, 2014, 35(17): 4835–4847
CrossRef Google scholar
[203]
Tang J, Zhang L, Liu Y, Zhang Q, Qin Y, Yin Y, Yuan W, Yang Y, Xie Y, Zhang Z, He Q. Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. International Journal of Pharmaceutics, 2013, 454(1): 31–40
CrossRef Google scholar
[204]
Wang J, Yu Y, Yan Z, Hu Z, Li L, Li J, Jiang X, Qian Q. Anticancer activity of oncolytic adenoviruses carrying p53 is augmented by 11R in gallbladder cancer cell lines in vitro and in vivo. Oncology Reports, 2013, 30(2): 833–841
[205]
Tang J, Fu H, Kuang Q, Zhang L, Zhang Q, Liu Y, Ran R, Gao H, Zhang Z, He Q. Liposomes co-modified with cholesterol anchored cleavable PEG and octaarginines for tumor targeted drug delivery. Journal of Drug Targeting, 2014, 22(4): 313–326
CrossRef Google scholar
[206]
Shamay Y, Shpirt L, Ashkenasy G, David A. Complexation of cell-penetrating peptide-polymer conjugates with polyanions controls cells uptake of HPMA copolymers and anti-tumor activity. Pharmaceutical Research, 2014, 31(3): 768–779
CrossRef Google scholar
[207]
Wang Y, Dou L, He H, Zhang Y, Shen Q. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Molecular Pharmaceutics, 2014, 11(3): 885–894
CrossRef Google scholar
[208]
Nakamura T, Yamazaki D, Yamauchi J, Harashima H. The nanoparticulation by octaarginine-modified liposome improves alpha-galactosylceramide-mediated antitumor therapy via systemic administration. Journal of Controlled Release, 2013, 171(2): 216–224
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(845 KB)

Accesses

Citations

Detail

Sections
Recommended

/