Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride

Jinbo OUYANG, Jingkang WANG, Yongli WANG, Qiuxiang YIN, Hongxun HAO

PDF(1005 KB)
PDF(1005 KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (1) : 94-104. DOI: 10.1007/s11705-015-1460-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride

Author information +
History +

Abstract

The sorption of water and organic vapors on valnemulin hydrochloride was determined by dynamic vapor sorption at 25 °C. The adsorption-desorption behavior of water vapor and a series of organic vapors was investigated to probe the structural changes in valnemulin hydrochloride before and after sorption. The isothermal adsorption equilibrium data was evaluated using Guggenheim-Anderson-deBoer (GAB) and Brunauer-Emmett-Teller (BET) models. The BET model is applicable only at low relative pressures (0.1≤RP≤0.4) while the GAB model is applicable in the whole range of RPs (0.1≤RP≤0.9). The sorption kinetics at high RPs was determined by fitting the sorption data to the Avrami equation and the sorption content vs. time relationship could be predicted by the Avrami equation. Finally, the possible sorption mechanism of valnemulin hydrochloride was also discussed.

Graphical abstract

Keywords

valnemulin hydrochloride / water vapor / organic vapors / sorption / kinetics

Cite this article

Download citation ▾
Jinbo OUYANG, Jingkang WANG, Yongli WANG, Qiuxiang YIN, Hongxun HAO. Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride. Front. Chem. Sci. Eng., 2015, 9(1): 94‒104 https://doi.org/10.1007/s11705-015-1460-3

References

[1]
Samra R M, Buckton G. The crystallisation of a model hydrophobic drug (terfenadine) following exposure to humidity and organic vapours. International Journal of Pharmaceutics, 2004, 284(1-2): 53–60
[2]
Greco S, Authelin J R, Leveder C, Segalini A. A practical method to predict physical stability of amorphous solid dispersions. Pharmaceutical Research, 2012, 29(10): 2792–2805
[3]
Raula J, Thielmann F, Kansikas J, Hietala S, Annala M, Seppala J, Lahde A, Kauppinen E I. Investigations on the humidity-induced transformations of salbutamol sulphate particles coated with L-leucine. Pharmaceutical Research, 2008, 25(10): 2250–2261
[4]
Stubberud L, Arwidsson H G, Graffner C. Water-solid interactions: I. A technique for studying moisture sorption/desorption. International Journal of Pharmaceutics, 1995, 114(1): 55–64
[5]
Remmelgas J, Simonutti A L, Ronkvist A, Gradinarsky L, Lofgren A. A mechanistic model for the prediction of in-use moisture uptake by packaged dosage forms. International Journal of Pharmaceutics, 2013, 441(1-2): 316–322
[6]
Ghorab M K, Marrs K, Taylor L S, Mauer L J. Water-solid interactions between amorphous maltodextrins and crystalline sodium chloride. Food Chemistry, 2014, 144(1): 26–35
[7]
Bianco S, Tewes F, Tajber L, Caron V, Corrigan O I, Healy A M. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems. International Journal of Pharmaceutics, 2013, 456(1): 143–152
[8]
Xia D N, Wu J X, Cui F D, Qu H Y, Rades T, Rantanen J, Yang M. Rantanen Jukka, Yang M S. Solvent-mediated amorphous-to-crystalline transformation of nitrendipine in amorphous particle suspensions containing polymers. European Journal of Pharmaceutical Sciences, 2012, 46(5): 446–454
[9]
Argyropoulos D, Alex R, Kohler R, Müller J. Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT-Food Science and Technology, 2012, 47(2): 324–331
[10]
Hunter N E, Frampton C S, Craig D Q, Belton P S. The use of dynamic vapour sorption methods for the characterisation of water uptake in amorphous trehalose. Carbohydrate Research, 2010, 345(13): 1938–1944
[11]
Dubey V, Kuthe S, Saxena C, Jaiswal D K. Study of sorption/desorption of water and organic vapors on poly (ethylene maleate)-based sensor-coating materials using an automated gravimetric analyzer. Journal of Applied Polymer Science, 2003, 88(7): 1760–1767
[12]
Harley S J, Glascoe E A, Maxwell R S. Thermodynamic study on dynamic water vapor sorption in Sylgard-184. Journal of Physical Chemistry B, 2012, 116(48): 14183–14190
[13]
Pinto M L, Pires J, Carvalho A P, de Carvalho M B, Bordado J C. Sorption isotherms of organic vapors on polyurethane foams. Journal of Physical Chemistry B, 2004, 108(36): 13813–13820
[14]
Passauer L, Struch M, Schuldt S, Appelt J, Schneider Y, Jaros D, Rohm H. Dynamic moisture sorption characteristics of xerogels from water-swellable oligo(oxyethylene) lignin derivatives. Applied Materials & Interfaces, 2012, 4(11): 5852–5862
[15]
Phillips O A, Sharaf L H. Pleuromutilin antibacterial agents: patent review 2001–2006. Expert Opinion on Therapeutic Patents, 2007, 17(4): 429–435
[16]
Heilmann C, Jensen L, Jensen J, Lundstrom K, Windsor D, Windsor H, Webster D. Treatment of resistant mycoplasma infection in immunocompromised patients with a new pleuromutilin antibiotic. Journal of Infection, 2001, 43(4): 234–238
[17]
Huang Q, Li J, Xia L, Xia X, Duan P, Shen J, Ding S. Residue depletion of valnemulin in swine tissues after oral administration. Analytica Chimica Acta, 2010, 664(1): 62–67
[18]
Gregg S, Sing K. Porosity. 2nd ed. London: Academic Press, 1982, 3–5
[19]
Timmermann E, Chirife J, Iglesias H. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 2001, 48(1): 19–31
[20]
Wolf W, Spiess W, Jung G, Weisser H, Bizot H, Duckworth R. The water-vapour sorption isotherms of microcrystalline cellulose (MCC) and of purified potato starch. Results of a collaborative study. Journal of Food Engineering, 1984, 3(1): 51–73
[21]
Timmermann E O. Multilayer sorption parameters: BET or GAB values? Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220(1-3): 235–260
[22]
Ozawa T. Kinetics of non-isothermal crystallization. Polymer, 1971, 12(3): 150–158
[23]
Hunnius M, Rufińska A, Maier W. Selective surface adsorption versus imprinting in amorphous microporous silicas. Microporous and Mesoporous Materials, 1999, 29(3): 389–403
[24]
Vartapetyan R S, Voloshchuk A. The mechanism of the adsorption of water molecules on carbon adsorbents. Russian Chemical Reviews, 1995, 64(11): 1055–1072
[25]
Klein C A, Miller R P, Stierwalt D L. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared. Applied Optics, 1994, 33(19): 4304–4313
[26]
Mirabel P, Reiss H, Bowles R K. A theory for the deliquescence of small particles. Journal of Physical Chemistry, 2000, 113(18): 8200–8205
[27]
Hancock B C, Shamblin S L. Water vapour sorption by pharmaceutical sugars. Pharmaceutical Science & Technology Today, 1998, 1(8): 345–351

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (Grant No. 21376165) and the Key Project of Tianjin Science and Technology Supporting Program (No. 13ZCZDNC02000).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1005 KB)

Accesses

Citations

Detail

Sections
Recommended

/