The influence of manufacturing parameters and adding support layer on the properties of Zirfon? separators

Li XU, Yue YU, Wei LI, Yan YOU, Wei XU, Shaoxing ZHANG

PDF(1246 KB)
PDF(1246 KB)
Front. Chem. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (3) : 295-305. DOI: 10.1007/s11705-014-1433-y
RESEARCH ARTICLE

The influence of manufacturing parameters and adding support layer on the properties of Zirfon? separators

Author information +
History +

Abstract

The composite separator comprising of polysulfone and zirconia was prepared by phase inversion precipitation technique. The influence of manufacturing parameters on its properties was investigated, and the results show that the manufacturing parameters affect the ionic resistance and maximum pore size significantly. A modified composite separator with a support layer was prepared to enhance the tensile strength of separator. By adding support layer, the tensile strength of the separator increases from 1.85 MPa to 13.66 MPa. In order to evaluate the practical applicability of the composite separator, a small-scale industrial electrolytic experiment was conducted to investigate the changes of cell voltage, gas purity and separator stability. The results show that the modified composite separator has a smaller cell voltage and a higher H2 purity than the asbestos separator, and are promising material for industrial hydrogen production.

Keywords

separator / alkaline water electrolysis / manufacturing parameters / support layer

Cite this article

Download citation ▾
Li XU, Yue YU, Wei LI, Yan YOU, Wei XU, Shaoxing ZHANG. The influence of manufacturing parameters and adding support layer on the properties of Zirfon® separators. Front. Chem. Sci. Eng., 2014, 8(3): 295‒305 https://doi.org/10.1007/s11705-014-1433-y

References

[1]
Albertini L B, Angelo A C D, Gonzalez E R. A nickel molybdenite cathode for the hydrogen evolution reaction in alkaline media. Journal of Applied Electrochemistry, 1992, 22(9): 888-892
[2]
Rosa V M, Santos M B F, Silva E P. New materials for water electrolysis diaphragms. International Journal of Hydrogen Energy, 1995, 20(9): 697-700
[3]
Kerres J, Eigenberger G, Reichle S, Schramm V, Hetzel K, Schnurnberger W, Seybold I. Advanced alkaline electrolysis with porous polymeric diaphragms. Desalination, 1996, 104(1-2): 47-57
[4]
Wendt H, Hofmann H. Cermet diaphragms and integrated electrode-diaphragm units for advanced alkaline water electrolysis. International Journal of Hydrogen Energy, 1985, 10(6): 375-381
[5]
Divisek J, Mergel J. Improvement of water electrolysis in alkaline media at intermediate temperatures. In: Proceeding of the 3rd world Hydrogen Energy Conference ., Oxford and New York: Pergamon Press, 1981, 209-219
[6]
Takashi O, Kenjiro T, Katsuyuki T, Katsuhiro A. Nickel oxide water electrolysis diaphragm fabricated by a novel method. International Journal of Hydrogen Energy, 2007, 32(18): 5094-5097
[7]
Irving L R. Diaphragm for electrolytic and electrochemical cells. US Patent, 4707228, 1986-10-17
[8]
Lu S F, Zhuang L, Lu J T. Homogeneous blend membrane made of poly(ether sulphone) and poly(vinylpyrrolidone) and its application to water electrolysis. Journal of Membrane Science, 2007, 300(1-2): 205-210
[9]
Vermeiren P H, Adriansens W, Leysen R. Zirfon®: A new separator for Ni-H2 batteries and alkaline fuel cells. International Journal of Hydrogen Energy, 1996, 21(8): 679-684
[10]
Vermeiren P H, Adriansens W, Moreels J P, Leysen R. Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. International Journal of Hydrogen Energy, 1998, 23(5): 321-324
[11]
Vermeiren P H, Leysen R, Beckers H, Moreels J P, Claes A. beckers H, Moreels JP, Claes A. The influence of manufacturing parameters on the properties of macroporous Zirfon® separators. Journal of Porous Materials, 2008, 15(3): 259-264
[12]
Wienk I M, Boom R M, Beerlage M A M, Bulte A M W, Smolders C A, Strathmann H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science, 1996, 113(2): 361-371
[13]
Aleix C, Tania G, Palet C. Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM). Journal of Membrane Science, 2007, 287(1): 29-40
[14]
Paulsen F G, Shojaie S S, Krantz W B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. Journal of Membrane Science, 1994, 91(5): 265-282
[15]
Stropnik C, Kaiser V, Musil V, Brumen M. Wet-phase-separation membranes from the polysulfone/N,N-dimethylacetamide/water ternary system: The formation and elements of their structureandproperties. Journal of Applied Polymer Science, 2005, 96(5): 1667-1674
[16]
Sakai T, Takenaka H, Wakabayashi N, Kawami Y, Torikai E. Gas permeation properties of solid polymer electrolyte (SPE) membranes. Journal of the Electrochemical Society, 1985, 132(6): 1328-1332
[17]
Wang D L, Teo W K, Li K. Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes. Journal of Membrane Science, 2002, 204(2): 247-256
[18]
Smolders C A, Reuvers A J, Boom I M, Wienk I M. Microstructures in phase-inversion membranes. Journal of Membrane Science, 1992, 73(2-3): 259-275
[19]
Vermeiren P H, Moreels J P, Leysen R. Porosity in composite Zirfon® membranes. Journal of Porous Materials, 1996, 3(1): 33-40
[20]
Xu L, Li W, You Y, Zhang S, Zhao Y. Polysulfone and zirconia composite separators for alkaline water electrolysis. Frontiers of Chemical Science and Engineering, 2013, 7(2): 154-161

Acknowledgments

Our research was supported by the National Natural Science Foundation of China (Grant No. 21276177) and Natural Science Foundation of Tianjin (Grants No. 10JCYBJC04900).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1246 KB)

Accesses

Citations

Detail

Sections
Recommended

/