Selective epoxidation of linear terminal olefins with metalloporphyrins under mild conditions
Xiaoguang BAI, Yuanbin SHE
Selective epoxidation of linear terminal olefins with metalloporphyrins under mild conditions
The epoxidation of linear terminal olefins with metalloporphyrins in the presence of dioxygen and isobutyraldehyde under ambient temperature and atmospheric pressure was investigated. The results show that all olefins could be smoothly converted to epoxides with high selectivities (70%-90%). For the metalloporphyrins with different catalytic activities within 1-hexene epoxidation in the order of Fe>Mn>Co, T(o-Cl)PPFe(Ⅲ)Cl was most effective, with a 41.7% yield and 80.2% selectivity of 1,2-epoxyhexane. Various amounts of catalyst were investigated, and it was found that with only 10 ppm catalyst the yield of 1,2-epoxyhexane and turnover number (TON) could reach up to 41.9% and 41859, respectively.
metalloporphyrins / olefins / dioxygen / epoxidation
[1] |
Sono M, Roach M P, Coulter E D, Dawson J H. Heme-containing oxygenases. Chem Rev, 1996, 969(7): 2841–2888
CrossRef
Google scholar
|
[2] |
Zhou X T, Ji H B, Cheng Z, Xu J C, Pei L X, Wang L F. Selective oxidation of sulfides to sulfoxides catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen. Bioorg Med Chem Lett, 2007, 17: 4650–4653
CrossRef
Google scholar
|
[3] |
Zhou X T, Ji H B, Xu J C, Pei L X, Wang L F, Yao X D. Enzymatic-like mediated olefins epoxidation by molecular oxygen under mild conditions. Tetrahedron Lett, 2007, 48: 2691–2695
CrossRef
Google scholar
|
[4] |
Maldotti A, Bartocci C, Varani G, Molinari A, Battioni P, Mansuy D. Oxidation of cyclohexane by molecular oxygen photoassisted by meso-tetraarylporphyrin iron(III)-hydroxo complexes. Inorg Chem, 1996, 35(5): 1126–1131
CrossRef
Google scholar
|
[5] |
Haber J, Matachowski L, Pamin K, Poltowicz J. The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system. J Mol Catal A, 2003, 198(1-2): 215–221
|
[6] |
Groves J T, Nemo T E. Epoxidation reactions catalyzed by iron porphyrins. Oxygen transfer from iodosylbenzene. J Am Chem Soc, 1983, 105(18): 5786–5791
CrossRef
Google scholar
|
[7] |
do Nascimento E, Silva G D, Caetano F A, Fernandez M A M, da Silva D C, de Carvalho M E M D, Pernaut J M, Reboucas J S, Idemori Y M. Partially and fullyβ-brominated Mn-porphyrins in P450 biomimetic systems: effects of the degree of bromination on electrochemical and catalytic properties. J Inorg Biochem, 2005, 99(5): 1193–1204
CrossRef
Google scholar
|
[8] |
Monnier J R. The direct epoxidation of higher olefins using molecular oxygen. Appl Catal A, 2001, 221(1-2): 73–91
|
[9] |
Mandal A K, Iqbal J. A versatile aerobic oxidation of organic compounds catalyzed by cobalt(II) porphyrins. Tetrahedron, 1997, 53(22): 7641–7648
CrossRef
Google scholar
|
[10] |
Nam W W, Valentine J S. Reevaluation of the significance of oxygen-18 incorporation in metal complex-catalyzed oxygenation reactions carried out in the presence of oxygen-18-labeled water (H218O). J Am Chem Soc, 1993, 115(5): 1772–1778
CrossRef
Google scholar
|
[11] |
Traylor T G, Tsuchiya S, Byun Y S, KimC. High-yield epoxidations with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by iron(III) porphyrins: heterolytic cleavage of hydroperoxides. J Am Chem Soc, 1993, 115(7): 2775–2781
CrossRef
Google scholar
|
[12] |
Traylor T G, Hill K W, Fann W P, Tsuchiya S, Dunlap B E. Aliphatic hydroxylation catalyzed by iron(III) porphyrins. J Am Chem Soc, 1992, 114(4): 1308–1312
CrossRef
Google scholar
|
[13] |
Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst. Org Process Res Dev, 2004, 8: 418–420
CrossRef
Google scholar
|
[14] |
Wang L Z, She Y B, Zhong R G, Ji H B, Zhang Y H, Song X F. A green process for oxidation of p-nitrotoluene catalyzed by metalloporphyrins under mild conditions. Org Process Res Dev, 2006, 10: 757–761
CrossRef
Google scholar
|
[15] |
Bottomley L A, Kadish K M. Counterion and solvent effects on the electrode-reactions of iron porphyrins. Inorg Chem, 1981, 20(5): 1348–1357
CrossRef
Google scholar
|
[16] |
Lyons J E, Ellis P E, Myers H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen. J Catal, 1995, 155(1): 59–73
CrossRef
Google scholar
|
[17] |
Haber J, Matachowski L, Pamin K, Poltowicz J. The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system. J Mol Catal A, 2003, 198(1-2): 215–221
|
[18] |
Guo C C, Liu X Q, Liu Y, Liu Q, Chu M F, Zhang X B. Studies of simpleμ-oxo-bisiron(III)porphyrin as catalyst of cyclohexane oxidation with air in absence of cocatalysts or coreductants. J Mol Catal A, 2003, 192(1-2): 289–294
|
/
〈 | 〉 |