PDF
(137KB)
Abstract
The regioselective acylation of pyridoxine catalyzed by immobilized lipase (Candida Antarctica) in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) has been investigated, and compared with that in acetonitrile (ACN). The acetylation of pyridoxine using acetic anhydride in [BMIM]PF6 gave comparable conversion of pyridoxine to 5-monoacetyl pyridoxine with considerably higher regioselectivity (93%–95%) than that in ACN (70%–73%). Among the tested parameters, water activity (aw) and temperature have profound effects on the reaction performances in either [BMIM]PF6 or ACN. For the reaction in [BMIM]PF6, higher temperature (50°C–55°C) and lower aw (<0.01) are preferable conditions to obtain better conversion and regioselectivity. Mass transfer limitation and intrinsic kinetic from the ionic nature of ionic liquids (ILs) may account for a different rate-temperature profile and a lower velocity at lower temperature in [BMIM]PF6-mediated reaction. Moreover, consecutive batch reactions for enzyme reuse also show that lipase exhibited a much higher thermal stability and better reusability in [BMIM]PF6 than in ACN, which represents another advantage of ILs as an alternative to traditional solvents beyond green technology.
Keywords
Pyridoxine
/
ionic liquid
/
lipase
/
acylation
/
regioselectivity
Cite this article
Download citation ▾
null.
Regioselective acylation of pyridoxine catalyzed
by immobilized lipase in ionic liquid.
Front. Chem. Sci. Eng., 2008, 2(3): 301-307 DOI:10.1007/s11705-008-0060-x