Preparation and sedimentation behavior of conductive polymeric nanoparticles

WANG Jixiao, LIU Rui, ZHANG Xiaoyan, ZHOU Zhibin, WANG Zhi, WANG Shichang

PDF(113 KB)
PDF(113 KB)
Front. Chem. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (3) : 231-235. DOI: 10.1007/s11705-008-0055-7

Preparation and sedimentation behavior of conductive polymeric nanoparticles

  • WANG Jixiao, LIU Rui, ZHANG Xiaoyan, ZHOU Zhibin, WANG Zhi, WANG Shichang
Author information +
History +

Abstract

A facile route to prepare Fe3O4/polypyrrole (PPY) core-shell magnetic nanoparticles was developed. Fe3O4 nanoparticles were first prepared by a chemical co-precipitation method, and then Fe3O4/PPY core-shell magnetic composite nanoparticles were prepared by in-situ polymerization of pyrrole in the presence of Fe3O4 nanoparticles. The obtained nanoparticles were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and laser particle size analyzer. The images indicate that the size of Fe3O4 particles is about 10 nanometers, and the particles are completely covered by PPY. The Fe3O4/PPY core-shell magnetic composite nanoparticles are about 100 nanometers and there are several Fe3O4 particles in one composite nanoparticle. The yield of the composite nanoparticles was about 50%. The sedimentation behavior of Fe3O4/PPY core-shell magnetic nanoparticles in electrolyte and soluble polymer solutions was characterized. The experimental results indicate that the sedimentation of particles can be controlled by adjusting electrolyte concentration, solvable polymers and by applying a foreign field. This result is useful in preparing gradient materials and improving the stability of suspensions.

Cite this article

Download citation ▾
WANG Jixiao, LIU Rui, ZHANG Xiaoyan, ZHOU Zhibin, WANG Zhi, WANG Shichang. Preparation and sedimentation behavior of conductive polymeric nanoparticles. Front. Chem. Sci. Eng., 2008, 2(3): 231‒235 https://doi.org/10.1007/s11705-008-0055-7

References

1. Heeger A J . Semiconducting and metallic polymer: the fourth generation of polymericmaterials. Synth Met, 2002, 125: 23–42. doi:10.1016/S0379‐6779(01)00509‐4
2. Pron A, Rannou P . Processible conjugated polymers:from organic semiconductors to organic metals and superconductors. Prog Polym Sci, 2002, 27: 135–190. doi:10.1016/S0079‐6700(01)00043‐0
3. Kumar D, Sharma R C . Advances in conductive polymers. Eur Polym J, 1998, 34: 1053–1060. doi:10.1016/S0014‐3057(97)00204‐8
4. Kang E T, Neoh K G, Tan K L . Polyaniline: a polymer with many interesting intrinsicredox states. Prog Polym Sci, 1998, 23: 277–324. doi:10.1016/S0079‐6700(97)00030‐0
5. Adhikari B, Majumdar S . Polymers in sensor applications. Prog Polym Sci, 2004, 29: 699–766. doi:10.1016/j.progpolymsci.2004.03.002
6. Ariza M J, Otero T . Nitrate and chloride transportthrough a smart membrane. J Membr Sci, 2007, 290: 241–249. doi:10.1016/j.memsci.2006.12.040
7. Yavuz O, Rama M K, Aldissi M, Podda P, Hariharan S . Polypyrrole composites for shieldingapplications. Synth Met, 2005, 151: 211–217. doi:10.1016/j.synthmet.2005.05.011
8. Joo J, Lee C Y . High frequency electromagneticinterference shielding response of mixtures and multilayer films basedon conducting polymers. J Appl Phys, 2000, 88: 513–518. doi:10.1063/1.373688
9. Duchet J, Legras R, Champagne S D . Chemical synthesis of polypyrrole: structure-propertiesrelationship. Synth Met, 1998, 98: 113–122. doi:10.1016/S0379‐6779(98)00180‐5
10. Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E . Supercapacitors from nanotubes/polypyrrolecomposites. Chem Phys Lett, 2001, 347: 36–40. doi:10.1016/S0009‐2614(01)01037‐5
11. Riul A, Soto A M G, Mello S V, Bone S, Taylor D M, Mattoso L H C . An electronic tongue using polypyrrole and polyaniline. Synth Met, 2003, 132: 109–116. doi:10.1016/S0379‐6779(02)00107‐8
12. Gomez R P . Hybrid organic-inorganic materials-in search of synergic activity. Adv Mater, 2001,13: 163–174. doi:10.1002/1521‐4095(200102)13:3<163::AID‐ADMA163>3.0.CO;2‐U
13. Liu J, Wan M X . Composites of polypyrrolewith conducting and ferromagnetic behaviors. J Polym Sci Part A-Polym Chem, 2002, 28: 2734–2739
14. Kang M, Kim H, Han B W, Suh J, Park J, Choi M . Nanoparticlepattern deposition from gas phase onto charged flat surface. Microelectron Eng, 2004, 71, 229–236. doi:10.1016/j.mee.2003.11.007
15. Brust M, Bethell D, Kiely C J, Schiffrin D J . Self-assembled gold nanoparticle thin films with nonmetallic opticaland electronic properties. Langmuir, 1998, 14: 5425–5429. doi:10.1021/la980557g
16. Gangopadhyay R, De A . Conducting polymer nanocomposites:a brief overview. Chem Mater, 2000, 12: 608–622. doi:10.1021/cm990537f
17. Shenhar R, Norsten T B, Rotello V M . Polymer-mediated nanoparticle assemble: structural controland applications. Adv Mater, 2005, 17: 657–669. doi:10.1002/adma.200401291
18. Tseng K K, Wang L S . Modeling and simulation ofmechanical properties of nanoparticles filled materials. J Nanopart Res, 2004, 6, 489–494. doi:10.1007/s11051‐004‐2606‐2
19. Han H, Chen J, Diamant Y, Etienne M, Walser A, Dorsinville R, Grebel H . Nonlinear transmissionproperties of nanostructures with single-wall carbon nanotubes andconductive polymers. Appl Phys Lett, 2005, 86: 053113. doi: 10.1063/1.1855421
20. Cho S I, Xiao R, Lee S B . Electrochemical synthesis of poly(3,4-ethylenedioxythiophene)nanotubes towards fast window-type electrochromic devices. Nanotechnol, 2007, 18: 405705. doi: 10.1088/0957‐4484/18/40/405705
21. Wang H L, Li W G, Jia Q X, Akhadov E . Tailoringconducting polymer chemistry for the chemical deposition of metalparticles and clusters. Chem Mater, 2007, 19: 520–525. doi:10.1021/cm0619508
22. Aleshin A N . Polymer nanofibers and nanotubes: charge transport and device applications. Adv Mater, 2006, 18: 17–27. doi:10.1002/adma.200500928
23. Phang S W, Hino T, Abdullah M H, Kuramoto N . Applicationsof polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbingand shielding materials. Mater Chem Phys 2007, 104: 327–335. doi:10.1016/j.matchemphys.2007.03.031
24. Gercek B, Yavuz M, Yilmaz H, Sari B, Unal H I . Comparison of electrorheological propertiesof some polyaniline derivatives. ColloidSurf A-Physicochem Eng Asp, 2007, 299: 124–132. doi:10.1016/j.colsurfa.2006.11.028
25. Choi C S, Park S J, Choi H J . Carbon nanotube/polyaniline nanocomposites and theirelectrorheological characteristics under an applied electric field. Curr Appl Phys, 2007, 7: 352–355. doi:10.1016/j.cap.2006.09.007
26. Chin B D, Park O O . Dispersion stability andelectrorheological properties of polyaniline particle suspensionsstabilized by poly(vinyl methyl ether). J Colloid Interface Sci, 2001, 234: 344–350. doi:10.1006/jcis.2000.7335
27. Bohets H, Vanhoutte K, De Maesschalck R, Cockaerts P, Vissers B, Nagels L J . Development of in situ ion selective sensors for dissolution. Anal Chim Acta, 2007, 581: 181–191. doi:10.1016/j.aca.2006.07.079
AI Summary AI Mindmap
PDF(113 KB)

Accesses

Citations

Detail

Sections
Recommended

/