Transition metal doped mesoporous titania with a crystalline framework as catalysts for oxidation of -bromotoluene to -bromobenzaldehyde

YANG Zehui1, OU Encai1, WANG Yunan1, PENG Li1, WANG Jiaqiang1, YIN Lihui2

PDF(111 KB)
PDF(111 KB)
Front. Chem. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (3) : 296-300. DOI: 10.1007/s11705-008-0044-x

Transition metal doped mesoporous titania with a crystalline framework as catalysts for oxidation of -bromotoluene to -bromobenzaldehyde

  • YANG Zehui1, OU Encai1, WANG Yunan1, PENG Li1, WANG Jiaqiang1, YIN Lihui2
Author information +
History +

Abstract

Transition metal M (M = Mn, Fe, Co, Ni, Cu, and Zn) doped mesoporous titania with a crystalline framework was employed as catalysts for the oxidation of p-bromotoluene (PBT) to p-bromobenzaldehyde (BBD) in acetic acid using aqueous hydrogen peroxide as oxidant. It was found that mesoporous TiO2 doped with those metals (Fe, Co and Ni) whose atomic radii are relatively smaller exhibited higher conversion rate of PBT. Among these catalysts, the Co/meso-TiO2 exhibited high substrate conversion and good product (p-bromobenzaldehyde) selectivity plus it can be reused once with almost the same activity. The effect of different Ti/Co (molar) ratio on the activities of Co/meso-TiO2 was also investigated.

Cite this article

Download citation ▾
YANG Zehui, OU Encai, WANG Yunan, PENG Li, WANG Jiaqiang, YIN Lihui. Transition metal doped mesoporous titania with a crystalline framework as catalysts for oxidation of -bromotoluene to -bromobenzaldehyde. Front. Chem. Sci. Eng., 2008, 2(3): 296‒300 https://doi.org/10.1007/s11705-008-0044-x

References

1. Krebs F C, Jørgensen M . Controlling the energy levelsof conducting polymers. Hydrogen versus fluorine in poly(dialkylterphenylenevinylene)s.Macromolecules, 2002, 35: 7200–7206. doi:10.1021/ma020678u
2. Mikroyannidis J A, Spiliopoulos I K, Kasimis T S, Kulkarni A P, Jenekhe S A . Synthesis, photophysics,and electroluminescence of conjugated poly(p-phenylenevinylene) derivatives with 1,3,4-oxadiazolesin the backbone. Macromolecules, 2003, 36: 9295–9302. doi:10.1021/ma034793w
3. Nokami J, Furukawa A, Okuda Y, Hazato A, Kurozumi S . Palladium-catalyzed coupling reactionsof bromobenzaldehydes with 3,4-di(tert-butyldimethylsilyloxy)-1-alkene to (3,4-dihydroxyalkenyl)benzaldehydesin the synthesis of lipoxin analogues. Tetrahedron Lett, 1998, 39: 1005–1008. doi:10.1016/S0040‐4039(97)10801‐2
4. Hass H B, Bender M L . The reaction of benzyl halideswith the sodium salt of 2-nitropropane. 1. A general synthesis ofsubstituted benzaldehydes.J Am Chem Soc, 1949, 71: 1767–1769. doi:10.1021/ja01173a066
5. Hass H B, Bender M L . o-Tolualdehyde. Org Syn Coll, 1963, 4: 932–932
6. Cole T E, Pettit R . Reduction of acid chloridesto aldehydes by means of the hydridoirontetracarbonyl anion. Tetrahedron Lett, 1977, 18: 781–784. doi:10.1016/S0040‐4039(01)92754‐6
7. Hutchins R O, Markowits M . μ-Bis(cyanotrihydroborato)-tetrakis(triphenylphosphine) dicopper(I).A new, selective, pH dependent reducing agent.Tetrahedron Lett, 1980, 21: 813–816. doi:10.1016/S0040‐4039(00)71512‐7
8. Chen Q, Zhu P, Wang Z H . Chinese Patent, 97 106 992, 2001
9. Antonelli D M, Ying J Y . Synthesis of hexagonallypacked mesoporous TiO2 by a modified Sol-Gelmethod. Angew Chem Int Ed Engl, 1995, 34: 2014–2017. doi:10.1002/anie.199520141
10. Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky D G . Block copolymer templatingsyntheses of mesoporous metal oxides with large ordering lengths andsemicrystalline framework. Chem Mater, 1999, 11: 2813–2816. doi:10.1021/cm990185c
11. Yue Y, Gao Z . Synthesis of mesoporous TiO2 with a crystalline framework. Chem Commun, 2000, 1755–1756
12. Wang K, Morris M A, Holmes J D . Preparation of mesoporous titania thin films with remarkablyhigh thermal stability. Chem Mater, 2005, 17: 1269–1271. doi:10.1021/cm047912a
13. Sreethawong T, Suzuki Y, Yoshikawa S . Photocatalytic evolution of hydrogen over nanocrystallinemesoporous titania prepared by surfactant-assisted templating sol-gelprocess, Catal Commun, 2005, 6: 119–124
14. Cassiers K, Linssen T, Mathieu M, Bai Y Q, Zhu H Y, Cool P, Vansant E F . Surfactant-directed synthesisof mesoporous titania with nanocrystalline anatase walls and remarkablethermal stability. J Phys Chem B, 2004, 108: 3713–3721. doi:10.1021/jp036830r
15. Yoshitake H, Sugihara T, Tatsumi T . Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilizationof its surface by chemical vapor deposition. Chem Mater, 2002, 14: 1023–1029. doi:10.1021/cm010539b
16. Perkas N, Wang Y, Koltypin Y, Gedanken A, Chandrasekaran S . Mesoporous iron–titaniacatalyst for cyclohexane oxidation. ChemCommun, 2001, 2: 988–989. doi:10.1039/b100910a
17. Idakiev V, Ilieva L, Andreeva D, Blin J L, Gigot L, Su B L . Complete benzene oxidation over gold-vanadia catalysts supportedon nanostructured mesoporous titania and zirconia. Appl Catal A: Gen, 2003, 243: 25–39. doi:10.1016/S0926‐860X(02)00534‐3
18. Yao W, Fang H, Ou E, Wang J, Yan Z . Highly efficient catalytic oxidation of cyclohexane overcobalt-doped mesoporous titania with anatase crystalline structure. Catal Commun, 2006, 7: 387–390. doi:10.1016/j.catcom.2005.12.012
19. Wang J, Fang H, Li Y, Li J, Yan Z . Liquid phase oxidation of p-chlorotoluene to p-chlorobenzaldehydeover cobalt-doped mesoporous titania with a crystalline framework. J Mol Catal A: Chem, 2006, 250: 75–79. doi:10.1016/j.molcata.2006.01.040
20. Mauryaa S K, Patil P, Umbarkar S B, Gurjar M K, Dongare M, Rudiger S, Kemnitz E . Vapor phase oxidation of4-fluorotoluene over vanadia-titania catalyst. J Mol Catal A: Chem, 2005, 234: 51–57. doi:10.1016/j.molcata.2005.02.020
21. Chang R . GeneralChemistry, 7th ed. New York: McGraw-Hill Higher Education Inc, 2002, 879
AI Summary AI Mindmap
PDF(111 KB)

Accesses

Citations

Detail

Sections
Recommended

/