Sep 2008, Volume 2 Issue 3
    

  • Select all
  • ZHOU Aoying
    null
  • LI Mei, LEE Wang-Chien, SIVASUBRAMANIAM Anand, ZHAO Jizhong
    Peer-to-peer systems have been widely used for sharing and exchanging data and resources among numerous computer nodes. Various data objects identifiable with high dimensional feature vectors, such as text, images, genome sequences, are starting to leverage P2P technology. Most of the existing works have been focusing on queries on data objects with one or few attributes and thus are not applicable on high dimensional data objects. In this study, we investigate K nearest neighbors query (KNN) on high dimensional data objects in P2P systems. Efficient query algorithm and solutions that address various technical challenges raised by high dimensionality, such as search space resolution and incremental search space refinement, are proposed. An extensive simulation using both synthetic and real data sets demonstrates that our proposal efficiently supports KNN query on high dimensional data in P2P systems.
  • XU Jianliang, TANG Xueyan, LEE Wang-Chien
    Wireless sensor networks are used in a large array of applications to capture, collect, and analyze physical environmental data. Many existing sensor systems instruct sensor nodes to report their measurements to central repositories outside the network, which is expensive in energy cost. Recent technological advances in flash memory have given rise to the development of storage-centric sensor networks, where sensor nodes are equipped with high-capacity flash memory storage such that sensor data can be stored and managed inside the network to reduce expensive communication. This novel architecture calls for new data management techniques to fully exploit distributed in-network data storage. This paper describes some of our research on distributed query processing in such flash-based sensor networks. Of particular interests are the issues that arise in the design of storage management and indexing structures combining sensor system workload and read/write/erase characteristics of flash memory.
  • Tang Yuanyan
    Pattern recognition has become one of the fastest growing research topics in the fields of computer science and electrical and electronic engineering in the recent years. Advanced research and development in pattern recognition have found numerous applications in such areas as artificial intelligence, information security, biometrics, military science and technology, finance and economics, weather forecast, image processing, communication, biomedical engineering, document processing, robot vision, transportation, and endless other areas, with many encouraging results. The achievement of pattern recognition is most likely to benefit from some new developments of theoretical mathematics including wavelet analysis. This paper aims at a brief survey of pattern recognition with the wavelet theory. It contains the following respects: analysis and detection of singularities with wavelets; wavelet descriptors for shapes of the objects; invariant representation of patterns; handwritten and printed character recognition; texture analysis and classification; image indexing and retrieval; classification and clustering; document analysis with wavelets; iris pattern recognition; face recognition using wavelet transform; hand gestures classification; character processing with B-spline wavelet transform; wavelet-based image fusion, and others.