Status of pattern recognition with wavelet analysis
Tang Yuanyan
Author information+
College of Computer Science, Chongqing University; Department of Computer Science, Hong Kong Baptist University;
Show less
History+
Published
05 Sep 2008
Issue Date
05 Sep 2008
Abstract
Pattern recognition has become one of the fastest growing research topics in the fields of computer science and electrical and electronic engineering in the recent years. Advanced research and development in pattern recognition have found numerous applications in such areas as artificial intelligence, information security, biometrics, military science and technology, finance and economics, weather forecast, image processing, communication, biomedical engineering, document processing, robot vision, transportation, and endless other areas, with many encouraging results. The achievement of pattern recognition is most likely to benefit from some new developments of theoretical mathematics including wavelet analysis. This paper aims at a brief survey of pattern recognition with the wavelet theory. It contains the following respects: analysis and detection of singularities with wavelets; wavelet descriptors for shapes of the objects; invariant representation of patterns; handwritten and printed character recognition; texture analysis and classification; image indexing and retrieval; classification and clustering; document analysis with wavelets; iris pattern recognition; face recognition using wavelet transform; hand gestures classification; character processing with B-spline wavelet transform; wavelet-based image fusion, and others.
Tang Yuanyan.
Status of pattern recognition with wavelet analysis. Front. Comput. Sci., 2008, 2(3): 268‒294 https://doi.org/10.1007/s11704-008-0012-0
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Auslander L, Kailath T, Mitter S, eds. Signal Processing I: Signal Processing Theory. New York: Springer-Verlag, 1990 2. Beylkin G, Coifman R, Daubechies I, et al.. Wavelets and their Applications. MA: Jones and Bartlett, 1991 3. Chui C K . An Introduction to Wavelets. Boston: Academic Press, 1992 4. Daubechies I . Wavelettransform, time-frequency localization and signal analysis. IEEE Transactions Information Theory, 1990, 36: 961–1005. doi:10.1109/18.57199 5. Grossmann A, Morlet J . Decomposition of hardy functioninto square integrable wavelets of constant shape. SIAM J. Math. Anal., 1984, 15: 723–736. doi:10.1137/0515056 6. IEEE. Special issueon wavelets and signal processing. IEEETransactions on Signal Processing, 1993, 41(12): 3213–3600 7. Mallat S . Atheory of multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1989, 11: 674–693. doi:10.1109/34.192463 8. Meyer Y . Ondeletteset Fonctions Splines: Seminaire EDP. EcolePolytechnique, Paris, 1986 9. SPIE. Special issueon wavelet applications. In: Harold H.Szu, editor, Proceedings of SPIE 2242, 1994 10. Chen C H, Lee J S, Sun Y N . Wavelet transformation for gray-level corner detection. Pattern Recognition, 1995, 28(6): 853–861. doi:10.1016/0031‐3203(94)00169‐M 11. Chen G, Yang Y H, Edge detection by regularizedcubic B-spline fitting. IEEE Transactionson Systems, Man and Cybernetics, April, 1995, 25(4): 636–643. doi:10.1109/21.370194 12. Chuang G C H, Kuo C C J . Wavelet descriptor of planarcurves: theory and applications”. IEEE Transactions Image Processing, 1996, 5(1): 56–70. doi:10.1109/83.481671 13. Deng W A, Lyengar S S . A new probability relaxationscheme and its application to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 432–443. doi:10.1109/34.491624 14. Law T, Iton H, Seki H . Image filtering, edge detection, and edge tracing usingfuzzy reasoning. IEEE Transactions on PatternAnalysis and Machine Intelligence, 1996, 18(5): 481–491. doi:10.1109/34.494638 15. Mallat S, Hwang W L . Singularity detection andprocessing with wavelets. IEEE Transactionson Information Theory, 1992, 38: 617–643. doi:10.1109/18.119727 16. Tang Y Y, Yang L H, Feng L . Contour detection of handwriting by modular-angle-separatedwavelets. In: Proc. of the 6-th Inter.Workshop on Frontiers of Handwriting Recognition (IWFHR-VI), Taejon, Korea, August 1998, 357–366 17. Tang Y Y, Yang L H, Liu J . Wavelet-based edge detection in Chinese document. In: Proc. the 17th Int. Conf. on Computer Processingof Oriental Languages, 1997, volume 1, 333–336 18. Thune M, Olstad B, Thune N . Edge detection in noisy data using finite mixture distributeanalysis. Pattern Recognition, 1997, 30(5): 685–699. doi:10.1016/S0031‐3203(96)00115‐X 19. Tieng Q M, Boles W W . Recognition of 2D objectcontours using the wavelet transform zero-crossing representation. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1997, 19: 910–916. doi:10.1109/34.608294 20. Young R K . Wavelet Theory and its Applications. Boston: Kluwer Academic Publishers, 1993 21. Tang Y Y, Li B F, Ma H, et al.. Ring-projection-wavelet-fractal signatures:a novel approach to feature extraction”. IEEE Transactions on Circuits and Systems II, 1998, 45(8): 1130–1134. doi:10.1109/82.718824 22. Tang Y Y, Liu J M, Ma H, et al.. Wavelet orthonormal decomposition for extractingfeatures in pattern recognition. InternationalJournal of Pattern Recognition and Artificial Intelligence, 1999, 13(6): 803–831. doi:10.1142/S0218001499000458 23. Tieng Q M, Boles W W . Wavelet-based affine invariantrepresentation: a tool for recognizing planar objects in 3D space. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1997, 19: 846–857. doi:10.1109/34.608288 24. Wunsch P, Laine A F . Wavelet descriptors for multiresolutionrecognition of handprinted characters. Pattern Recognition, 1995, 28(8): 1237–1249. doi:10.1016/0031‐3203(95)00001‐G 25. Haley G M, Manjunath B S . Rotation-invariant textureclassification using a complete space-frequency model”. IEEE Transactions on Image Processing, 1999, 8(2): 255–269. doi:10.1109/83.743859 26. Shen D, Ip Horace H S . Discriminative wavelet shapedescriptors for recognition of 2D pattern. Pattern Recognition, 1999, 32: 151–165. doi:10.1016/S0031‐3203(98)00137‐X 27. Yoon S H, Kim J H, Alexander W E, et al.. An optimum solution for scale-invariant objectrecognition based on the multi-resolution approximation. Pattern Recognition, 1998, 31: 889–908. doi:10.1016/S0031‐3203(97)00111‐8 28. Kunte R S, Samuel R D S . Wavelet descriptors for recognitionof basic symbols in printed Kannada text. International Journal of Wavelets, Multiresolution and InformationProcessing, 2007, 5(2): 351–367. doi:10.1142/S0219691307001793 29. Lee S W, Kim C H, Ma H, et al.. Multiresolution recognition of unconstrainedhandwritten numerals with wavelet transform and multilayer clusterneural network. Pattern Recognition, 1996, 29: 1953–1961. doi:10.1016/S0031‐3203(96)00053‐2 30. Tang Y Y, Ma H, Li B, et al.. Character recognition based on doubechies wavelet. In: Proceedings of The First Int. Conf. on MultimodelInterface (ICMI'96), Beijing: Tsinghua University Press, 1996, 215–220 31. Van de Wouwer G, Schenuders P, Van Dyck D . Statistical texture characterization from discrete waveletrepresentation. IEEE Transactions on ImageProcessing, 1999, 8: 592–598. doi:10.1109/83.753747 32. Van de Wouwer G, Scheunders P, Livens S, et al.. Wavelet correlation signatures for color texturecharacterization”. Pattern Recognition, 1999, 32: 443–451. doi:10.1016/S0031‐3203(98)00035‐1 33. Liang K H, Tjahjadi T . Adaptive scale fixing formultiscale texture segmentation. IEEE Transactionson Image Processing, 2006, 15(1): 249–256. doi:10.1109/TIP.2005.860340 34. Muneeswaran K, Ganesan L, Arumugam S, et al.. A novel approach combing Gabor wavelet transformsand moments for texture segmentation. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2005, 3(4): 559–572. doi:10.1142/S0219691305001020 35. Jain P, Merchant S N . Wavelet-based multiresolutionhistogram for fast image retrieval. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2004, 2(1): 59–73. doi:10.1142/S0219691304000354 36. Ksantini R, Ziou D, Dubeau F, et al.. Image retrieval based on region separation andmultiresolution analysis. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2006, 4(1): 147–175. doi:10.1142/S0219691306001142 37. Kubo M, Aghbari Z, Makinouchi A . Content-based image retrieval technique using wavelet-basedshift and brightness invariant edge feature. International Journal of Wavelets, Multiresolution and InformationProcessing, 2003, 1(2): 163–178. doi:10.1142/S0219691303000141 38. Moghaddam H A, Khajoie TT, Rouhi A H, et al.. Wavelet correlogram: a new approach for imageindexing and retrieval. Pattern Recognition., 2005, 38(12): 2506–2518. doi:10.1016/j.patcog.2005.05.010 39. Special Issue on Digital Library. IEEE Transactions on Pattern Analysis And Machine Intelligence, 18, 1996 40. Smeulders A W M, Worring M, Santini S, et al.. Content-based image retrieval at the end ofearly years”. IEEE Transactions onPattern Analysis and Machine Intelligence, 2000, 22: 1349–13805. doi:10.1109/34.895972 41. Murtagh F Starck J L . Pattern clustering basedon noise modeling in wavelet space. PatternRecognition, 1998, 31: 847–855. doi:10.1016/S0031‐3203(97)00115‐5 42. Shankar B U, Meher S K, AChosh. Neuro-wavelet classifier for multispectral remote sensingimages. International Journal of Wavelets,Multiresolution and Information Processing, 2007, 5(4): 589–611. doi:10.1142/S0219691307001914 43. Tang Y Y, Yang LH, Liu J M, et al.. Wavelet Theory and Its Applications to PatternRecognition. Singapore: World Scientific Publishing Co. Pte, Ltd., 2000 44. Liang K H, Chang F, Tan T M, et al.. Multiresolution hadamard representation andits application to document image analysis. In: Proceedingsof The Second Int. Conf. on Multimodel Interface (ICMI'99), Hong Kong, January 5–7 1999, V1–6 45. Tang Y Y, Liu J, Ma H, et al.. Two-dimensional wavelet transform in documentanalysis. In: Proceedings of The FirstInt. Conf. on Multimodel Interface (ICMI'96). Beijing: Tsinghua University Press, 1996, 274–279 46. Tang Y Y, Ma H, Liu J M, et al.. Multiresolution analysis in extraction of referencelines from documents with graylevel background. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19: 921–926. doi:10.1109/34.608296 47. Tang Y Y, Ma H, Xi D H, et al.. Extraction of reference lines from documentwith grey-level background using sub-image of wavelets.In: Proceedings of the 3rd International Conferenceon Document Analysis and Recognition, Montreal, Canada, Oct. 14–16 1995, 571–574 48. Daugman J . Demodulationby complex-valued wavelets for stochastic pattern recognition. International Journal of Wavelets, Multiresolutionand Information Processing, 2003, 1(1): 1–317. doi:10.1142/S0219691303000025 49. Kouzani A Z, Ong S H . Lighting-effects classificationin facial images using wavelet packets transform. International Journal of Wavelets, Multiresolution and InformationProcessing, 2003, 1(2): 199–215. doi:10.1142/S021969130300013X 50. Lai J H, Yuen P C, Feng G C . Spectroface: a Fourier-based approach for human facerecognition. In: Proceedings of The SecondInt. Conf. on Multimodel Interface (ICMI'99), 1999, VI115–120 51. Yang L H, Bui T D, Suen C Y . Image recognition based on nonlinear wavelet approximation. International Journal of Wavelets, Multiresolutionand Information Processing, 2003, 1(2): 151–161. doi:10.1142/S0219691303000104 52. Kumar S, Kumar D K . Visual hand gestures classificationusing wavelet transforms and moment based features. International Journal of Wavelets, Multiresolution and InformationProcessing, 2005, 3(1): 79–101. doi:10.1142/S0219691305000762 53. Kumar S, Kumar D K, Sharma A, et al.. Visual hand gestures classification using wavelettransforms. International Journal of Wavelets,Multiresolution and Information Processing, 2003, 1(4): 373–392. doi:10.1142/S0219691303000232 54. Sharnia A, Kumart D K, Kumar S . Wavelet directional histograms of the spatio-temporaltemplates of human gestures. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2004, 2(3): 283–298. doi:10.1142/S0219691304000512 55. Yang F, Wang Z, Yu Y L . Chinese typeface generation and composition using B-splinewavelet transform. In: Proceedings ofSPIE, Wavelet Applications V Orlando, Florida, 1998, 616–620 56. El-Khamy S E, Hadhoud M M, Dessouky M I, et al.. Wavelet fusion: a tool to break the limits onLMMSE image super-resolution. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2006, 4(1): 105–118. doi:10.1142/S0219691306001129 57. Li H . Wavelet-basedweighted average and human vision system image fusion. International Journal of Wavelets, Multiresolution and InformationProcessing, 2006, 4(1): 97–103. doi:10.1142/S0219691306001117 58. Li S . Multisensorremote sensing image fusion using stationary wavelet transform: effectsof basis and decomposition level. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2008, 6(1): 37–50. doi:10.1142/S0219691308002203 59. Chambolle A, DeVore R A, Lee N Y, et al.. Nonlinear wavelet image processing: variationalproblems, compression, and noise removal through wavelet shrinkage. IEEE Transactions on Image Processing, 1998, 7(3): 319–335. doi:10.1109/83.661182 60. Combettes P L, Pesquet J C . Wavelet-constrained imagerestoration. International Journal of Wavelets,Multiresolution and Information Processing, 2004, 2(4): 371–389. doi:10.1142/S0219691304000688 61. Combettes P L . Convex multiresolution analysis. IEEETransactions on Pattern Analysis And Machine Intelligence, 1998, 20(12): 1308–1318. doi:10.1109/34.735804 62. Liao Z, Tang Y Y . Signal denoising using waveletsand block hidden markov model. InternationalJournal of Pattern Recognition and Artificial Intelligence, 2005, 19(5): 681–700. doi:10.1142/S0218001405004265 63. You X, Chen Q, Fang B, et al.. Thinning character using modulus minima of wavelettransform. International Journal of PatternRecognition and Artificial Intelligence, 2006, 20(3): 361–376. doi:10.1142/S0218001406004764 64. Mallat S, Zhong S . Characterization of signalsfrom multiscale edges. IEEE Transactionson Pattern Analysis and Machine Intelligence, 1992, 14(7): 710–732. doi:10.1109/34.142909 65. Tang Y Y, Yang L H, Feng L . Characterization and detection of edges by Lipschitzexponent and MASW wavelet transform. In: Proc. the 14th Int. Conf. on Pattern Recognition, Brisbane, Australia, August 1998, 1572–1574 66. Hsieh J W, Liao H M, Ko M T, et al.. Wavelet-based shape form shading. Graphical Models and Image Processing, 1995, 57(4): 343–362. doi:10.1006/gmip.1995.1030 67. Tang Y Y, Cheng H D, Suen C Y . Transformation-ring-projection (TRP) algorithm and itsVLSI implementation. International Journalof Pattern Recognition and Artificial Intelligence, 1991, 5(1 and 2): 25–56. doi:10.1142/S0218001491000053 68. Horn B K P, Brooks M J, eds. Shape from Shading. Cambridge, MA: MIT Press, 1989 69. Unser M, Aldroubi A, Eden M . On the asymptotic convergence of B-spline wavelets toGabor functions. IEEE Transactions on InformationTheory, 1992, 38: 864–872. doi:10.1109/18.119742 70. Unser M, Aldroubi A, Eden M . A family of polynomial spline wavelets transforms. Signal Processing, 1993, 30: 141–162. doi:10.1016/0165‐1684(93)90144‐Y 71. Bow S T . Pattern Recognition and Image Preprocessing. New York: Marcel-Dekker, 1992 72. Shensa M J . The discrete wavelets transform: wedding the atrous and Mallat algorithms. IEEE Transactions Signal Processing, 1992, 40: 2464–2482. doi:10.1109/78.157290 73. Starck J L, Bijaoui A, Murtagh F . Multiresolution support applied to image filtering anddeconvolution. Graphical Models Image Processing, 1995, 57: 420–431. doi:10.1006/gmip.1995.1036 74. Tang Y Y, Suen C Y, Yan C D . Document processing for automatic knowledge acquisition. IEEE Transactions on Knowledge and Data Engineering, 1994, 6(1): 3–21. doi:10.1109/69.273022 75. Mallat S G . Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoust. Speech Signal Process., 1989, 37(12): 2091–2110. doi:10.1109/29.45554 76. Nastar C, Ayache N . Frequency-based non-rigidmotion analysis. IEEE Transactions on PatternAnal. and Mach. Intell., 18(11), 1996 77. O'Toole A, Abdi H, Deffenbacher K, et al.. Low-dimensional representation of faces in higherdimensions of the face space. Journal ofThe Optical Society of America A., 1993, 10(3): 405–411 78. Sirovich L, Kirby M . Low-dimensional procedurefor the characterization of human faces. Journal of The Optical Society of America A., 1987, 4(3): 519–524 79. Swets D L, Weng J . Using discriminant eigenfeaturesfor image retrieval. IEEE Transactionson Pattern Analysis And Machine Intelligence, 1996, 18(8): 831–836. doi:10.1109/34.531802 80. Turk M, Pentland A . Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71–86. doi:10.1162/jocn.1991.3.1.71 81. Yuen P C, Dai D Q, Feng G C . Wavelet-based PCA for human face recognition. Proceeding of IEEE Southwest Symposium on ImageAnalysis and Interpretation, 1998, 223–228
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.