Due to its porous structure and special reaction characteristics, the cathode-electrolyte interface in alkali metal-oxygen batteries (AMOBs) has a substantial impact on their electrochemical performance. However, in traditional sandwich-like battery structures, the reaction position in the cathode is restricted to the finite planar cathode-electrolyte interface, leading to AMOBs with limited performance. As a result, a growing number of research studies have sought to re-engineer the cathode-electrolyte interface to enhance the performance of AMOBs. This review summarizes the latest methods published in recent years in this field and compares a variety of different techniques. Regardless of the method used, the ultimate goal is to expand the cathode-electrolyte interface to create more triple reaction activity sites for ions, oxygen and electrons. The most important performance improvement of AMOBs is reflected by the increased specific capacity. Additional challenges valuable for the further development of alkali metal-oxygen batteries are also discussed
Lithium metal has emerged as the most prospective candidate for the realization of improved battery systems. However, notorious Li dendrite formation and the huge volume effect during cycling critically impair the further practical deployment of Li metal batteries. Herein, we propose hierarchical Ni- and Co-based oxynitride (NiCoO2/CoO/Ni3N) nanoarrays with superior lithiophilicity on a three-dimensional nickel foam (NiCoON/NF) as a host for highly stable Li metal anodes. The uniform nitrogen-infused nanorod-on-nanosheet arrays present improved electrical conductivity and an increased concentration of active sites with oxygen vacancies to enhance the surface lithiophilicity, which effectively facilitates homogeneous Li nucleation/growth. Moreover, the hyperbranched structure can induce a homogeneous distribution of Li-ion flux, owing to the enlarged surface area, thereby providing sufficient space to store deposited lithium and relieve the volume expansion. Consequently, the NiCoON/NF host delivers a high Coulombic efficiency (98.4% over 600 cycles) at 1 mA cm-2 and an ultralong lifespan (> 2000 h) under a high capacity of 3 mAh cm-2. Remarkably, a Li@NiCoON/NF-LiFePO4 full battery also reveals impressive electrochemical performance. This work demonstrates new insights into safe rechargeable Li metal batteries.
The construction of stable and reliable electrode interfaces is one of the key scientific issues widely encountered by the battery community. An anion-derived solid electrolyte interphase (SEI) has been recently reported to outperform the traditional solvent-rich SEI in inhibiting side reactions, motivating ion transport and regulating electrode reactions in working Li batteries. Here, we first explicitly introduce the fundamental characteristics of anion-derived SEIs and then concisely present novel developments in electrolyte chemistry involving highly concentrated, localized highly concentrated and weakly solvating electrolytes, which facilitate the formation of anion-derived SEIs on anodes. The critical significance of these SEIs for building fast-charging and stable Li batteries is particularly highlighted. Finally, we outline the future challenges of designing Li metal interfaces to further enhance the cycling reversibility and lifespan of working batteries.
Organometallic halide perovskites have rapidly become promising materials as a result of their outstanding properties in high-efficiency and low-cost next-generation solar cells. Perovskite materials can be adjusted to be p- or n-type by defect engineering through, for example, the self-doping method by controlling the precursor compositions and process conditions. Recently, a p-type perovskite/n-type perovskite homojunction has been proposed and constructed, which provides a possibility for the design of a novel type of perovskite solar cell (PSC). Following a brief overview of the physical fundamentals of perovskite homojunctions, a detailed discussion of the promising progress of recently reported homojunction PSCs is presented here, including theoretical simulations, extrinsic and interfacial doping and graded structures. Furthermore, the opportunities regarding higher doping concentrations, simpler device architectures, ion migration inhibition and device stability are discussed. Finally, an outlook that offers insights into the future development of highly efficient and stable homojunction PSCs is provided.
Seawater splitting powered by solar or wind sources is a significant renewable energy storage technology for the production of green hydrogen energy. However, both the chlorine evolution reaction and chloride corrosion are intractable issues in seawater splitting. Here, a porous electrode based on a phosphate-intercalated NiFe (oxy)hydroxide shell coated on a nickel molybdate (NiMoO4) micropillar core (denoted as P-NiFe@NiMoO4) is synthesized through an electrochemical oxidation strategy. During the electrochemical oxidation process, the etching of MoO2 promotes the reconstruction of NiFe (oxy)hydroxide and the formation of porous structures in an alkaline solution. The optimized P-NiFe@NiMoO4 electrocatalysts afford a low overpotential of 258 mV at a current density of 100 mA/cm2 in alkaline seawater. By pairing the anode with a cathode of as-synthesized P-NiMoO, the electrolyzer presents a low voltage of 1.63 V at 100 mA/cm2 in alkaline seawater with excellent stability. Moreover, the remarkable stability of the anode seems to be attributed to the in-situ phosphate formed during the electrochemical oxidation process to passivate chloride corrosion.
Deuterium incorporation is crucial in organic synthesis and has wide applications in the pharmaceutical industry. State-of-the-art H/D isotope exchange and chemical defunctionalization for deuterium incorporation suffer from significant drawbacks, including expensive deuterium sources, low deuteration efficiency and poor selectivity. In this perspective, we highlight an alternative pathway for forming C-D bonds by electrocatalytic heavy water splitting (D2O) under mild conditions. In addition, the intrinsic mechanism and examples of the synthesis of deuterated pharmaceuticals are discussed in detail. Finally, we present the challenges facing this field and provide an overall perspective on future research directions.
Lithium-metal anodes show significant promise for the construction of high-energy rechargeable batteries due to their high theoretical capacity (3860 mAh g-1) and low redox potential (-3.04 V vs. a standard hydrogen electrode). When Li metal is used with conventional liquid and solid electrolytes, the poor lithiophilicity of the electrolyte results in an unfavorable parasitic reaction and uneven distribution of Li+ flux at the electrode/electrolyte interface. These issues result in limited cycle life and dendrite problems associated with the Li-metal anode that can lead to rapid performance fade, failure and even safety risks of the battery. The lithiophilicity at the anode/electrolyte interface is important for the stable and safe operation of rechargeable Li-metal batteries. In this review, several factors that affect the lithiophilicity of electrolytes are discussed, including surface energy, roughness and chemical interactions. The existing problems and the strategies for improving the lithiophilicity of different electrolytes are also discussed. This review helps to shed light on the understanding of interfacial chemistry vs. Li metal of various electrolytes and guide interfacial engineering towards the practical realization of high-energy
The lithium-sulfur battery is currently considered to be a promising candidate for next-generation energy storage devices. However, its commercial application is severely restricted by rapid capacity decay mainly arising from unavoidable dissolution of intermediate lithium polysulfide of the S-based cathodes. Herein, multifunctional stripped grapheme-carbon nanotubes (SG-CNT) with 1D/2D interwoven and hierarchical pore structure as a promising host to stabilize S was constructed by cheaper raw materials and a facile strategy. Based on comprehensive analysis, the interwoven network and hierarchical pores along with abundant oxidative functional groups in matrix provided large contact area with S, short transport pathway for electrons/Li-ions, sufficient space to accommodate volumetric change, and superior confinement ability for S/polysulfides, thus resulting in effectively stabilizing the S cathode with high S loading and increasing its utilization. Therefore, the S@SG-CNT cathodes exhibited a high reversible capacity of 1227 mAh g-1 at 0.1 A g-1, excellent cyclability with a capacity of
Energy storage devices such as batteries hold great importance for society, owing to their high energy density, environmental benignity and low cost. However, critical issues related to their performance and safety still need to be resolved. The periodic table of elements is pivotal to chemistry, physics, biology and engineering and represents a remarkable scientific breakthrough that sheds light on the fundamental laws of nature. Here, we provide an overview of the role of the most prominent elements, including s-block, p-block, transition and inner-transition metals, as electrode materials for lithium-ion battery systems regarding their perspective applications and fundamental properties. We also outline hybrid materials, such as MXenes, transition metal oxides, alloys and graphene oxide. Finally, the challenges and prospects of each element and their derivatives and hybrids for future battery systems are discussed, which may provide guidance towards green, low-cost, versatile and sustainable energy storage devices.