Hierarchical Ni- and Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anodes

Yaya Wang , Hanjiao Xu , Jiang Zhong , Tao Wang , Bingan Lu , Jian Zhu , Xidong Duan

Energy Materials ›› 2021, Vol. 1 ›› Issue (2) : 100012

PDF
Energy Materials ›› 2021, Vol. 1 ›› Issue (2) :100012 DOI: 10.20517/energymater.2021.18
Article

Hierarchical Ni- and Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anodes

Author information +
History +
PDF

Abstract

Lithium metal has emerged as the most prospective candidate for the realization of improved battery systems. However, notorious Li dendrite formation and the huge volume effect during cycling critically impair the further practical deployment of Li metal batteries. Herein, we propose hierarchical Ni- and Co-based oxynitride (NiCoO2/CoO/Ni3N) nanoarrays with superior lithiophilicity on a three-dimensional nickel foam (NiCoON/NF) as a host for highly stable Li metal anodes. The uniform nitrogen-infused nanorod-on-nanosheet arrays present improved electrical conductivity and an increased concentration of active sites with oxygen vacancies to enhance the surface lithiophilicity, which effectively facilitates homogeneous Li nucleation/growth. Moreover, the hyperbranched structure can induce a homogeneous distribution of Li-ion flux, owing to the enlarged surface area, thereby providing sufficient space to store deposited lithium and relieve the volume expansion. Consequently, the NiCoON/NF host delivers a high Coulombic efficiency (98.4% over 600 cycles) at 1 mA cm-2 and an ultralong lifespan (> 2000 h) under a high capacity of 3 mAh cm-2. Remarkably, a Li@NiCoON/NF-LiFePO4 full battery also reveals impressive electrochemical performance. This work demonstrates new insights into safe rechargeable Li metal batteries.

Keywords

Hyperbranched structure / lithiophilic oxynitride nanoarrays / high Coulombic efficiency / super cycling stability / lithium metal anodes

Cite this article

Download citation ▾
Yaya Wang, Hanjiao Xu, Jiang Zhong, Tao Wang, Bingan Lu, Jian Zhu, Xidong Duan. Hierarchical Ni- and Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anodes. Energy Materials, 2021, 1(2): 100012 DOI:10.20517/energymater.2021.18

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y,Yang Y,Du W.Interlayer chemistry of layered electrode materials in energy storage devices.Adv Funct Mater2021;31:2007358

[2]

He W,Qu B.Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries.Adv Sci (Weinh)2019;6:1802114 PMCID:PMC6661944

[3]

Yang Y,Xiao J.Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides.Adv Mater2020;32:e1905295

[4]

Ou X,Zhang S,Tang Y.Simultaneously pre-alloying and artificial solid electrolyte interface towards highly stable aluminum anode for high-performance Li hybrid capacitor.Energy Storage Mater2020;28:357-63

[5]

Wu C,Lu W.Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries.Adv Sci (Weinh)2020;7:1902643 PMCID:PMC7080552

[6]

Guo J,Yang H,Liu J.Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries.J Mater Chem A2019;7:2184-91

[7]

Kang H,Yang M.Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries.J Power Sources2021;485:229286

[8]

Liu S,Xie D.Recent development in lithium metal anodes of liquid-state rechargeable batteries.J Alloys Compd2018;730:135-49

[9]

Shi Y,Liu GX.Interfacial evolution of lithium dendrites and their solid electrolyte interphase shells of quasi-solid-state lithium-metal batteries.Angew Chem Int Ed Engl2020;59:18120-5

[10]

Tikekar MD,Tu Z.Design principles for electrolytes and interfaces for stable lithium-metal batteries.Nat Energy2016;1

[11]

Hou G,Salpekar D.Stable lithium metal anode enabled by an artificial multi-phase composite protective film.J Power Sources2020;448:227547

[12]

Wang G,Xie D.Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes.Energy Storage Mater2019;23:701-6

[13]

Chu F,Wu C.Metal-organic frameworks as electrolyte additives to enable ultrastable plating/stripping of Li anode with dendrite inhibition.ACS Appl Mater Interfaces2019;11:3869-79

[14]

Liang J,Liao X.A nano-shield design for separators to resist dendrite formation in lithium-metal batteries.Angew Chem Int Ed Engl2020;59:6561-6

[15]

Ren W,Cui Z,Li B.Recent progress of functional separators in dendrite inhibition for lithium metal batteries.Energy Storage Mater2021;35:157-68

[16]

Hatzell KB,Cobb CL.Challenges in lithium metal anodes for solid-state batteries.ACS Energy Lett2020;5:922-34

[17]

Krauskopf T,Zeier WG.Physicochemical concepts of the lithium metal anode in solid-state batteries.Chem Rev2020;120:7745-94

[18]

Dong T,Xu G.A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery.Energy Environ Sci2018;11:1197-203

[19]

Lin Z,Wang Z.A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery.Nano Energy2020;73:104786

[20]

Zhang R,Cheng XB,Zhang Q.Advanced micro/nanostructures for lithium metal anodes.Adv Sci (Weinh)2017;4:1600445 PMCID:PMC5357990

[21]

Park S,Yun YS.Advances in the design of 3D-structured electrode materials for lithium-metal anodes.Adv Mater2020;32:e2002193

[22]

Li K,Ma J,Mu D.A 3D and stable lithium anode for high-performance lithium-iodine batteries.Adv Mater2019;31:e1902399

[23]

Zhang J,Tu F.In situ constructing lithiophilic and Ion/Electron dual-regulated current collector for highly stable lithium metal batteries.Chem Eng J2022;428:132510

[24]

Lu W,Wei W,Chen L.Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode.J Mater Chem A2019;7:24262-70

[25]

Wang Z,He H.Hierarchical nanosheet arrays of metal oxides guide uniform deposition for lithium anodes.ACS Sustainable Chem Eng2020;8:102-10

[26]

Huang X,Zhang B.Lithiated NiCo2O4 nanorods anchored on 3D nickel foam enable homogeneous li plating/stripping for high-power dendrite-free lithium metal anode.ACS Appl Mater Interfaces2019;11:31824-31

[27]

Chang X,Ou X,Zhou J.Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage.Adv Energy Mater2019;9:1902672

[28]

Park H,Song T.Lithiophilic surface treatment of metal- and metallic compound-based frameworks by gas nitriding for lithium metal batteries.J Power Sources2020;477:228776

[29]

Luan J,Yuan H.Plasma-strengthened lithiophilicity of copper oxide nanosheet-decorated Cu foil for stable lithium metal anode.Adv Sci (Weinh)2019;6:1901433 PMCID:PMC6794617

[30]

Zhu J,Luo Y.Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode.Energy Storage Mater2019;23:539-46

[31]

Lei M,Ren L,Wang J.Construction of copper oxynitride nanoarrays with enhanced lithiophilicity toward stable lithium metal anodes.J Power Sources2020;463:228191

[32]

Lei M,Ren L.Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes.ACS Appl Mater Interfaces2019;11:30992-8

[33]

Li Y,Zheng W.Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction.Nano Energy2018;52:360-8

[34]

Zhao D,Liu H.Sulfur-induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage.Adv Mater Interfaces2019;6:1901308

[35]

Wang H,Chen R,Chen HM.Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction.Adv Energy Mater2015;5:1500091

[36]

Xu K,Li X.Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation.J Am Chem Soc2015;137:4119-25

[37]

Bao J,Fan B.Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation.Angew Chem2015;127:7507-12

[38]

Cai Z,Hu E.Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis.Adv Energy Mater2018;8:1701694

[39]

Xu L,Xiao Z.Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction.Angew Chem Int Ed Engl2016;55:5277-81

[40]

Park K.Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N.Adv Energy Mater2017;7:1700732

[41]

Wang Y,Qi Y.Uniform titanium nitride decorated Cu foams by electrophoretic deposition for stable lithium metal anodes.J Alloys Compd2021;874:159916

[42]

Yan C,Chen X.Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries.Angew Chem Int Ed Engl2018;57:14055-9

PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

/