Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries

Ye Xiao , Rui Xu , Lei Xu , Jun-Fan Ding , Jia-Qi Huang

Energy Materials ›› 2021, Vol. 1 ›› Issue (2) : 100013

PDF
Energy Materials ›› 2021, Vol. 1 ›› Issue (2) :100013 DOI: 10.20517/energymater.2021.17
Review

Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries

Author information +
History +
PDF

Abstract

The construction of stable and reliable electrode interfaces is one of the key scientific issues widely encountered by the battery community. An anion-derived solid electrolyte interphase (SEI) has been recently reported to outperform the traditional solvent-rich SEI in inhibiting side reactions, motivating ion transport and regulating electrode reactions in working Li batteries. Here, we first explicitly introduce the fundamental characteristics of anion-derived SEIs and then concisely present novel developments in electrolyte chemistry involving highly concentrated, localized highly concentrated and weakly solvating electrolytes, which facilitate the formation of anion-derived SEIs on anodes. The critical significance of these SEIs for building fast-charging and stable Li batteries is particularly highlighted. Finally, we outline the future challenges of designing Li metal interfaces to further enhance the cycling reversibility and lifespan of working batteries.

Keywords

Lithium metal anode / solid electrolyte interphases / highly concentrated electrolytes / weakly solvating electrolytes / anion-derived SEIs

Cite this article

Download citation ▾
Ye Xiao, Rui Xu, Lei Xu, Jun-Fan Ding, Jia-Qi Huang. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Materials, 2021, 1(2): 100013 DOI:10.20517/energymater.2021.17

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bui M,Bardow A.Carbon capture and storage (CCS): the way forward.Energy Environ Sci2018;11:1062-176

[2]

Sterba J,Riesgo Fernández P,Fidalgo Valverde G.Lithium mining: accelerating the transition to sustainable energy.Resources Policy2019;62:416-26

[3]

Cheng X,Yuan H.A perspective on sustainable energy materials for lithium batteries.SusMat2021;1:38-50

[4]

Watari T,Nakajima K,Dominish E.Integrating circular economy strategies with low-carbon scenarios: lithium use in electric vehicles.Environ Sci Technol2019;53:11657-65

[5]

Sadhukhan J.An in-depth life cycle assessment (LCA) of lithium-ion battery for climate impact mitigation strategies.Energies2021;14:5555

[6]

Liu J,Tao X.Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries.EcoMat2020;2

[7]

Shen X,Ding F.Advanced electrode materials in lithium batteries: retrospect and prospect.Energy Mater Adv2021;2021:1-15

[8]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;30:e1800561

[9]

Kong L,Peng H,Zhang Q.Advanced energy materials for flexible batteries in energy storage: a review.SmartMat2020;1:1-35

[10]

Lin D,Cui Y.Reviving the lithium metal anode for high-energy batteries.Nat Nanotechnol2017;12:194-206

[11]

Lu Y,Hu Y,Li H.Research and development of advanced battery materials in China.Energy Storage Mater2019;23:144-53

[12]

Sun C,Lu X,Lai C.Sol electrolyte: pathway to long-term stable lithium metal anode.Adv Funct Mater2021;31:2100594

[13]

Zhang Q,Yuan H.Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives.Small Sci2021;1:2100058

[14]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[15]

Ding J,Yan C,Yuan H.A review on the failure and regulation of solid electrolyte interphase in lithium batteries.J Energy Chem2021;59:306-19

[16]

Yan C,Park HS.Perspective on the critical role of interface for advanced batteries.J Energy Chem2020;47:217-20

[17]

Takenaka N,Yamada Y,Yamada A.Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism.Adv Mater2021;33:e2100574

[18]

Liu W,Mitlin D.Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes.Adv Energy Mater2020;10:2002297

[19]

Yan C,Xiao Y.Toward critical electrode/electrolyte interfaces in rechargeable batteries.Adv Funct Mater2020;30:1909887

[20]

Meng X,Cao H.Internal failure of anode materials for lithium batteries - a critical review.Green Energy Environ2020;5:22-36

[21]

Goodenough JB.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[22]

Yan C,Chen X.Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes.J Am Chem Soc2019;141:9422-9

[23]

Chen X,Shen X.The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes.Angew Chem Int Ed Engl2018;57:16643-7

[24]

Song W,Sherrell PC.Electronic structure influences on the formation of the solid electrolyte interphase.Energy Environ Sci2020;13:4977-89

[25]

Groß A.Modelling the electric double layer at electrode/electrolyte interfaces.Curr Opin Electrochem2019;14:1-6

[26]

Camacho-forero LE.Effects of charged interfaces on electrolyte decomposition at the lithium metal anode.J Power Sources2020;472:228449

[27]

Shi S,Liu Z.Direct calculation of Li-ion transport in the solid electrolyte interphase.J Am Chem Soc2012;134:15476-87

[28]

Peled E,Ardel G.Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes.J Electrochem Soc1997;144:L208-10

[29]

Zhang X,Zhang Q.Advances in interfaces between Li metal anode and electrolyte.Adv Mater Interfaces2018;5:1701097

[30]

Li S,Xie Y,Jia J.Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress.Adv Mater2018;30:e1706375

[31]

Zhang X,Chen X,Zhang Q.Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries.Adv Funct Mater2017;27:1605989

[32]

Gao Y,Wang K.Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface.Nat Energy2020;5:534-42

[33]

Xiao Y,Yan C,Ding J.Waterproof lithium metal anode enabled by cross-linking encapsulation.Sci Bull2020;65:909-16

[34]

Dai H,Dong J,Lai C.Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation.Nat Commun2020;11:643 PMCID:PMC6994683

[35]

Xu R,Cheng X.Artificial soft-rigid protective layer for dendrite-free lithium metal anode.Adv Funct Mater2018;28:1705838

[36]

Liu K,Lee HR.Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer.J Am Chem Soc2017;139:4815-20

[37]

Yan C,Tian Y.Dual-Layered film protected lithium metal anode to enable dendrite-free lithium deposition.Adv Mater2018;30:e1707629

[38]

Zheng G,Liang Z.Interconnected hollow carbon nanospheres for stable lithium metal anodes.Nat Nanotechnol2014;9:618-23

[39]

Xu R,Zhang R.Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries.Adv Mater2019;31:e1808392

[40]

Yan C,Yao YX.An armored mixed conductor interphase on a dendrite-free lithium-metal anode.Adv Mater2018;30:e1804461

[41]

Xu R,Yan C.Artificial interphases for highly stable lithium metal anode.Matter2019;1:317-44

[42]

Cai W,Yao Y.Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes.Small Struct2020;1:2000010

[43]

Cai W,Zhu GL.A review on energy chemistry of fast-charging anodes.Chem Soc Rev2020;49:3806-33

[44]

Logan E.Electrolyte design for fast-charging li-ion batteries.Trends Chem2020;2:354-66

[45]

Yamada Y,Ko S,Yamada A.Advances and issues in developing salt-concentrated battery electrolytes.Nat Energy2019;4:269-80

[46]

Yan C,Yao YX,Huang JQ.Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries.Angew Chem Int Ed Engl2021;60:8521-5

[47]

Scharifker B.Theoretical and experimental studies of multiple nucleation.Electrochimica Acta1983;28:879-89

[48]

Scharifker B,Mozota J.Electrocrystallization of copper sulphide (CU2S) on copper.Electrochimica Acta1984;29:261-6

[49]

Bewick A,Thirsk HR.Kinetics of the electrocrystallization of thin films of calomel.Trans Faraday Soc1962;58:2200

[50]

Li Z,Wang Y.Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium-sulfur batteries.Adv Energy Mater2019;9:1802207

[51]

Wu H,Wang C,Xu W.Recent progress in understanding solid electrolyte interphase on lithium metal anodes.Adv Energy Mater2021;11:2003092

[52]

Suo L,Gobet M.Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries.Proc Natl Acad Sci U S A2018;115:1156-61 PMCID:PMC5819397

[53]

Xu R,Xiao Y,Yuan H.The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase.Energy Storage Mater2020;28:401-6

[54]

Chen X.Atomic Insights into the fundamental interactions in lithium battery electrolytes.Acc Chem Res2020;53:1992-2002

[55]

Peled E.Review-SEI: past, present and future.J Electrochem Soc2017;164:A1703-19

[56]

Zhao J,Shi F.Surface fluorination of reactive battery anode materials for enhanced stability.J Am Chem Soc2017;139:11550-8

[57]

Chen YC,Song LJ.Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study.J Phys Chem C2011;115:7044-9

[58]

Lin D,Chen W.Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon.Nano Lett2017;17:3731-7

[59]

Monroe C.The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces.J Electrochem Soc2005;152:A396

[60]

Wu M,Liu Y,Huang L.Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries.J Power Sources2011;196:8091-7

[61]

Zhang Y,Tang H.An ex-situ nitridation route to synthesize Li 3 N-modified Li anodes for lithium secondary batteries.J Power Sources2015;277:304-11

[62]

Billone M,Poeppel R,Goretta K.Elastic and creep properties of Li2O.J Nucl Mater1986;141-143:282-8

[63]

Huang W,Wang H.Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy.Nano Lett2019;19:5140-8

[64]

Cheng X,Chen X.Implantable solid electrolyte interphase in lithium-metal batteries.Chem2017;2:258-70

[65]

Shen X,Chen X,Li X.The failure of solid electrolyte interphase on li metal anode: structural uniformity or mechanical strength?.Adv Energy Mater2020;10:1903645

[66]

Ramasubramanian A,Foroozan T,Shahbazian-yassar R.Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries.J Phys Chem C2019;123:10237-45

[67]

Ahmad Z,Hafiz H.Interfaces in solid electrolyte interphase: implications for lithium-ion batteries.J Phys Chem C2021;125:11301-9

[68]

Chen XR,Yan C,Cheng XB.A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries.Angew Chem Int Ed Engl2020;59:7743-7

[69]

Cui C,Eidson N.A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase.Adv Mater2020;32:e1906427

[70]

Zheng J,Zhang B.Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase.J Mater Chem A2021;9:10251-9

[71]

Fan X,Han F.Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery.Sci Adv2018;4:eaau9245 PMCID:PMC6303121

[72]

Li W,Araújo CM.Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N.Energy Environ Sci2010;3:1524

[73]

Zhu J,Chen X.Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode.Energy Storage Mater2019;16:426-33

[74]

Moradabadi A.Thermodynamics and kinetics of defects in Li2S.Appl Phys Lett2016;108:213906

[75]

Borodin O,Ross PN.Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate.J Phys Chem C2013;117:7433-44

[76]

Chen X,Li H.Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in lithium batteries.2019;2:128-31

[77]

Yamada Y.Review - superconcentrated electrolytes for lithium batteries.J Electrochem Soc2015;162:A2406-23

[78]

Zheng J,Kwok A,Xiao J.Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications.Adv Sci (Weinh)2017;4:1700032 PMCID:PMC5566236

[79]

Seo DM,Han S,Boyle PD.Electrolyte solvation and ionic association.J Electrochem Soc2012;159:A553-65

[80]

Yao YX,Yan C.Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte*.Angew Chem Int Ed Engl2021;60:4090-7

[81]

Suo L,Li H,Chen L.A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries.Nat Commun2013;4:1481

[82]

Wang J,Sodeyama K,Tateyama Y.Superconcentrated electrolytes for a high-voltage lithium-ion battery.Nat Commun2016;7:12032 PMCID:PMC4931331

[83]

Yamada Y,Sodeyama K,Tateyama Y.Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes.ChemElectroChem2015;2:1687-94

[84]

Li M,Chen Z,Lu J.New concepts in electrolytes.Chem Rev2020;120:6783-819

[85]

Qian J,Xu W.High rate and stable cycling of lithium metal anode.Nat Commun2015;6:6362 PMCID:PMC4346622

[86]

Fan X,Ji X.Highly fluorinated interphases enable high-voltage Li-metal batteries.Chem2018;4:174-85

[87]

Wang J,Sodeyama K.Fire-extinguishing organic electrolytes for safe batteries.Nat Energy2018;3:22-9

[88]

Jiao S,Cao R.Stable cycling of high-voltage lithium metal batteries in ether electrolytes.Nat Energy2018;3:739-46

[89]

Jiang LL,Yao YX,Huang JQ.Inhibiting solvent Co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries.Angew Chem Int Ed Engl2021;60:3402-6

[90]

Yamada Y,Sodeyama K.Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries.J Am Chem Soc2014;136:5039-46

[91]

Takenaka N,Bouibes A,Yamada A.Microscopic formation mechanism of solid electrolyte interphase film in lithium-ion batteries with highly concentrated electrolyte.J Phys Chem C2018;122:2564-71

[92]

Fan X,Chen L.All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents.Nat Energy2019;4:882-90

[93]

Jiang Z,Liang X.Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries.Adv Funct Mater2021;31:2005991

[94]

Ren X,Lee H.Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries.Chem2018;4:1877-92

[95]

Yang Y,Yin Y.High-efficiency lithium-metal anode enabled by liquefied gas electrolytes.Joule2019;3:1986-2000

[96]

Cao X,Matthews BE.Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries.Energy Storage Mater2021;34:76-84

[97]

Cao X,Xu W.Review - localized high-concentration electrolytes for lithium batteries.J Electrochem Soc2021;168:010522

[98]

Chen S,Mei D.High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes.Adv Mater2018;30:e1706102

[99]

Piao N,Xu H.Countersolvent electrolytes for lithium-metal batteries.Adv Energy Mater2020;10:1903568

[100]

Liu T,Yue J.Ultralight electrolyte for high-energy lithium-sulfur pouch cells.Angew Chem Int Ed Engl2021;60:17547-55

[101]

Pham TD.Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte.Small2021;17:e2100133

[102]

Liu X,Li H.Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure.Adv Energy Mater2021;11:2003905

[103]

Jeong S,Iriyama Y,Ogumi Z.Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions.Electrochem Solid-State Lett2003;6:A13

[104]

Xing L,Schroeder M.Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries.Acc Chem Res2018;51:282-9

[105]

Yamada Y.Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable batteries.Chem Lett2017;46:1056-64

[106]

Yamada Y,Abe T.A superconcentrated ether electrolyte for fast-charging Li-ion batteries.Chem Commun (Camb)2013;49:11194-6

[107]

Wang J,Fang M,Yamada Y.Concentrated electrolytes widen the operating temperature range of lithium-ion batteries.Adv Sci (Weinh)2021;8:e2101646 PMCID:PMC8456280

[108]

Liu T,Bi X.In situ quantification of interphasial chemistry in Li-ion battery.Nat Nanotechnol2019;14:50-6

[109]

Yao YX,Zhang Q.Emerging interfacial chemistry of graphite anodes in lithium-ion batteries.Chem Commun (Camb)2020;56:14570-84

[110]

Moon H,Mandai T.Mechanism of Li ion desolvation at the interface of graphite electrode and glyme–Li salt solvate ionic liquids.J Phys Chem C2014;118:20246-56

[111]

Ming J,Wu Y.New insight on the role of electrolyte additives in rechargeable lithium ion batteries.ACS Energy Lett2019;4:2613-22

[112]

Zhang T.Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery.Front Chem Sci Eng2018;12:577-91

[113]

Jeong S,Kim D.Suppression of dendritic lithium formation by using concentrated electrolyte solutions.Electrochem Commun2008;10:635-8

[114]

Alvarado J,Pollard TP.Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes.Energy Environ Sci2019;12:780-94

[115]

Zhang X,Hou L.Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries.ACS Energy Lett2019;4:411-6

[116]

Louli AJ,Weber R.Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis.Nat Energy2020;5:693-702

[117]

Yu Z,Kong X.Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries.Nat Energy2020;5:526-33

[118]

Chen S,Yu L.High-efficiency lithium metal batteries with fire-retardant electrolytes.Joule2018;2:1548-58

[119]

Dokko K,Yamauchi K.Solvate ionic liquid electrolyte for Li–S batteries.J Electrochem Soc2013;160:A1304-10

[120]

Moon H,Tatara R.Solvent activity in electrolyte solutions controls electrochemical reactions in Li-Ion and Li-sulfur batteries.J Phys Chem C2015;119:3957-70

[121]

Ren X,Cao X.Enabling high-voltage lithium-metal batteries under practical conditions.Joule2019;3:1662-76

[122]

Cao X,Zou L.Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization.Nat Energy2019;4:796-805

[123]

Cai W,Yao YX.The boundary of lithium plating in graphite electrode for safe lithium-ion batteries.Angew Chem Int Ed Engl2021;60:13007-12

[124]

Amanchukwu CV,Qin J,Bao Z.Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping.Adv Energy Mater2019;9:1902116

[125]

Cao X,Ren X.Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries.Proc Natl Acad Sci U S A2021;118:e2020357118 PMCID:PMC7936379

[126]

Ding JF,Yao N.Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries.Angew Chem Int Ed Engl2021;60:11442-7

[127]

Santos E.The crucial role of local excess charges in dendrite growth on lithium electrodes.Angew Chem Int Ed Engl2021;60:5876-81 PMCID:PMC7986653

[128]

Xu R,Ma XX.Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface.Angew Chem Int Ed Engl2021;60:4215-20

[129]

Li T,Sun Y,Wang R.New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal.ACS Materials Lett2021;3:838-44

[130]

Xu R,Ma XX,Yao YX.Designing and demystifying the lithium metal interface toward highly reversible batteries.Adv Mater2021;e2105962

[131]

Battisti D,Klassen B.Vibrational studies of lithium perchlorate in propylene carbonate solutions.J Phys Chem1993;97:5826-30

[132]

Kim SC,Vilá RA.Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability.J Am Chem Soc2021;143:10301-8

[133]

Xue W,Li Y.Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte.Nat Energy2021;6:495-505

PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

/