Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries

Cai-Cai Li , Xu-Sheng Zhang , Yu-Hui Zhu , Ying Zhang , Sen Xin , Li-Jun Wan , Yu-Guo Guo

Energy Materials ›› 2021, Vol. 1 ›› Issue (2) : 100017

PDF
Energy Materials ›› 2021, Vol. 1 ›› Issue (2) :100017 DOI: 10.20517/energymater.2021.21
Review

Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries

Author information +
History +
PDF

Abstract

Lithium-metal anodes show significant promise for the construction of high-energy rechargeable batteries due to their high theoretical capacity (3860 mAh g-1) and low redox potential (-3.04 V vs. a standard hydrogen electrode). When Li metal is used with conventional liquid and solid electrolytes, the poor lithiophilicity of the electrolyte results in an unfavorable parasitic reaction and uneven distribution of Li+ flux at the electrode/electrolyte interface. These issues result in limited cycle life and dendrite problems associated with the Li-metal anode that can lead to rapid performance fade, failure and even safety risks of the battery. The lithiophilicity at the anode/electrolyte interface is important for the stable and safe operation of rechargeable Li-metal batteries. In this review, several factors that affect the lithiophilicity of electrolytes are discussed, including surface energy, roughness and chemical interactions. The existing problems and the strategies for improving the lithiophilicity of different electrolytes are also discussed. This review helps to shed light on the understanding of interfacial chemistry vs. Li metal of various electrolytes and guide interfacial engineering towards the practical realization of high-energy rechargeable batteries.

Keywords

Rechargeable batteries / Li-metal anodes / lithiophilicity / electrode/electrolyte interface

Cite this article

Download citation ▾
Cai-Cai Li, Xu-Sheng Zhang, Yu-Hui Zhu, Ying Zhang, Sen Xin, Li-Jun Wan, Yu-Guo Guo. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. Energy Materials, 2021, 1(2): 100017 DOI:10.20517/energymater.2021.21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng J,Fan X.High-fluorinated electrolytes for Li-S batteries.Adv Energy Mater2019;9:1803774

[2]

Tan SJ,Hu XC.Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries.Angew Chem Int Ed Engl2019;58:7802-7

[3]

Wang WP,Yin YX.A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries.Adv Mater2020;32:e2000302

[4]

Lee Y,Jung C.High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes.Nat Energy2020;5:299-308

[5]

Chen X,Niu J.Pre-solid electrolyte interphase-covered Li metal anode with improved electro-chemo-mechanical reliability in high-energy-density batteries.ACS Appl Mater Interfaces2021;13:34064-73

[6]

Guo Z,Xia S.Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries.Adv Sci (Weinh)2021;8:e2100899 PMCID:PMC8373100

[7]

Wang L,Ban X.Lithiophilic nio nanoarrays-modified Ni skeletons with vertical channels for high-loading Li metal batteries.J Electrochem Soc2021;168:050536

[8]

Pathak R,Wu F.Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries.Energy Storage Materials2021;41:448-65

[9]

Lu R,Cheng Y.Dual-regulation of ions/electrons in a 3D Cu-CuxO host to guide uniform lithium growth for high-performance lithium metal anodes.J Mater Chem A2021;9:10393-403

[10]

Cha E,Ponraj R.A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries.Mater Chem Front2021;5:6294-314

[11]

Yan K,Lee H.Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth.Nat Energy2016;1:16010

[12]

Chen XR,Yan C.Review on Li deposition in working batteries: from nucleation to early growth.Adv Mater2021;33:e2004128

[13]

Wang D,Liu F.Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries.Nano Lett2021;21:4757-64

[14]

Wenzel RN.Resistance of solid surfaces to wetting by water.Ind Eng Chem1936;28:988-94

[15]

Su B,Jiang L.Bioinspired interfaces with superwettability: from materials to chemistry.J Am Chem Soc2016;138:1727-48

[16]

Quéré D.Wetting and roughness.Annu Rev Mater Res2008;38:71-99

[17]

Wang J,Xie J.Fundamental study on the wetting property of liquid lithium.Energy Storage Materials2018;14:345-50

[18]

Luo W,Zhu Y.Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer.Adv Mater2017;29:1606042

[19]

Zhang Y,Hitz E.A carbon-based 3D current collector with surface protection for Li metal anode.Nano Res2017;10:1356-65

[20]

Fu KK,Fu Z.Transient behavior of the metal interface in lithium metal-garnet batteries.Angew Chem Int Ed Engl2017;56:14942-7

[21]

Liu B,Fu K.Garnet solid electrolyte protected Li-metal batteries.ACS Appl Mater Interfaces2017;9:18809-15

[22]

Wang C,Liu B.Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes.Nano Lett2017;17:565-71

[23]

Fu KK,Liu B.Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.Sci Adv2017;3:e1601659 PMCID:PMC5384807

[24]

Lin D,Cui Y.Reviving the lithium metal anode for high-energy batteries.Nat Nanotechnol2017;12:194-206

[25]

Chen L,Nie A.Lithium metal protected by atomic layer deposition metal oxide for high performance anodes.J Mater Chem A2017;5:12297-309

[26]

Li NW,Li JY,Guo YG.Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping.Adv Sci (Weinh)2017;4:1600400 PMCID:PMC5323882

[27]

Yan C,Tian Y.Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition.Adv Mater2018;30:e1707629

[28]

Fan X,Borodin O.Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries.Nat Nanotechnol2018;13:715-22

[29]

Tan S,Tian Y,Guo Y.Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: progress and prospects.Adv Funct Mater2021;31:2105253

[30]

Kwon B,Kim D,Lee J.Electrochemically active red P/BaTiO3-based protective layers suppressing Li dendrite growth for Li metal batteries.Adv Mater Interfaces2020;7:2001037

[31]

Kim Y,Ha S.Two-dimensional phosphorene-derived protective layers on a lithium metal anode for lithium-oxygen batteries.ACS Nano2018;12:4419-30

[32]

Li NW,Yang CP.An artificial solid electrolyte interphase layer for stable lithium metal anodes.Adv Mater2016;28:1853-8

[33]

Guo H,Guo J.Enhanced cycling performance of Li-O2 battery by using a Li3PO4-protected lithium anode in DMSO-based electrolyte.ACS Appl Energy Mater2018;1:5511-7

[34]

Pang Q,Shyamsunder A.An in vivo formed solid electrolyte surface layer enables stable plating of Li metal.Joule2017;1:871-86

[35]

Gao Y,Li YC,Mallouk TE.Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries.J Am Chem Soc2017;139:15288-91

[36]

Li NW,Yin YX.A flexible solid electrolyte interphase layer for long-life lithium metal anodes.Angew Chem Int Ed Engl2018;57:1505-9

[37]

Hu Z,Dong S.Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes.Chem Mater2017;29:4682-9

[38]

Jin Q,Gao H,Zhang Z.Novel LixSiSy/Nafion as an artificial SEI film to enable dendrite-free Li metal anodes and high stability Li-S batteries.J Mater Chem A2020;8:8979-88

[39]

Liang J,Zhao Y.An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries.Adv Energy Mater2019;9:1902125

[40]

Yan C,Yao YX.An armored mixed conductor interphase on a dendrite-free lithium-metal anode.Adv Mater2018;30:e1804461

[41]

Jiang Z,Han Z.Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability.Angew Chem Int Ed Engl2019;58:11374-8

[42]

Cui Q,Wang J.Electrochemical oxidation of Li2O2 surface-doped with Li2CO3.ACS Appl Mater Interfaces2020;12:6627-32

[43]

Gireaud L,Laruelle S,Tarascon J.Lithium metal stripping/plating mechanisms studies: a metallurgical approach.Electrochem commun2006;8:1639-49

[44]

Tang W,Chen Z,Loh KP.Chemically polished lithium metal anode for high energy lithium metal batteries.Energy Storage Materials2018;14:289-96

[45]

Gu Y,Li YJ.Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.Nat Commun2018;9:1339 PMCID:PMC5890267

[46]

Gu Y,He J.Electrochemical polishing of lithium metal surface for highly demanding solid-electrolyte interphase.ChemElectroChem2019;6:181-8

[47]

Wang SH,Dong W.Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes.Nat Commun2019;10:4930 PMCID:PMC6821877

[48]

Lin D,Liang Z.Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nat Nanotechnol2016;11:626-32

[49]

Liang Z,Zhao J.Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating.Proc Natl Acad Sci U S A2016;113:2862-7 PMCID:PMC4801240

[50]

Zhang Y,Wang C.High-capacity, low-tortuosity, and channel-guided lithium metal anode.Proc Natl Acad Sci U S A2017;114:3584-9 PMCID:PMC5389307

[51]

Liu Y,Liang Z,Yan K.Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode.Nat Commun2016;7:10992 PMCID:PMC4802050

[52]

Fan L,Liu L.Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase.Adv Energy Mater2018;8:1802350

[53]

Zhang Y,Pastel G.3D wettable framework for dendrite-free alkali metal anodes.Adv Energy Mater2018;8:1800635

[54]

Zhang R,Shen X.Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries.Joule2018;2:764-77

[55]

Xu Y,Wang L.Interlayered dendrite-free lithium plating for high-performance lithium-metal batteries.Adv Mater2019;31:e1901662

[56]

Duan H,Chen X.Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries.J Am Chem Soc2018;140:18051-7

[57]

Zhang R,Chen X.Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes.Angew Chem Int Ed Engl2017;56:7764-8

[58]

Chen X,Hou TZ.Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes.Sci Adv2019;5:eaau7728 PMCID:PMC6377277

[59]

Li K,Ma J,Mu D.A 3D and stable lithium anode for high-performance lithium-iodine batteries.Adv Mater2019;31:e1902399

[60]

Ye H,Yao HR.Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries.Angew Chem Int Ed Engl2019;58:1094-9

[61]

Wu C,Lu W.Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries.Adv Sci (Weinh)2020;7:1902643 PMCID:PMC7080552

[62]

Wei C,Tao Y.Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte.Energy Storage Materials2021;34:12-21

[63]

Ma Q,Yue J.Viscoelastic and nonflammable interface design-enabled dendrite-free and safe solid lithium metal batteries.Adv Energy Mater2019;9:1803854

[64]

Wang Z,Wang H.A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery.Adv Mater2018;30:1704436

[65]

Zhang Z,Liu Y.Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed Li-dendrite formation and enhanced electrochemical performance.ChemSusChem2018;11:3774-82

[66]

Zeng X,Shi Y.Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries.Chem2018;4:298-307

[67]

Fan W,Zhang X.A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries.Adv Sci (Weinh)2018;5:1800559 PMCID:PMC6145227

[68]

Zuo TT,Wu XW.Constructing a stable lithium metal-gel electrolyte interface for quasi-solid-state lithium batteries.ACS Appl Mater Interfaces2018;10:30065-70

[69]

Zhou W,Li Y,Manthiram A.Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte.J Am Chem Soc2016;138:9385-8

[70]

Hartmann P,Busche MR.Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes.J Phys Chem C2013;117:21064-74

[71]

Duan H,Chen WP.Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries.Adv Mater2019;31:e1807789

[72]

Duan H,Shi Y.Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers.J Am Chem Soc2018;140:82-5

[73]

Liang JY,Zhang XD.Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries.J Am Chem Soc2019;141:9165-9

[74]

Li M,Kolek M.Solid-state lithium-sulfur battery enabled by Thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode.Adv Funct Mater2020;30:1910123

[75]

Wang C,Zhang L.Universal soldering of lithium and sodium alloys on various substrates for batteries.Adv Energy Mater2018;8:1701963

[76]

Duan J,Nolan AM.Lithium-graphite paste: an interface compatible anode for solid-state batteries.Adv Mater2019;31:e1807243

[77]

Zheng H,Tian R.Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling.Adv Funct Mater2019;30:1906189

[78]

Luo W,Zhu Y.Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte.J Am Chem Soc2016;138:12258-62

[79]

Lu Y,Ruan Y.An in situ element permeation constructed high endurance Li-LLZO interface at high current densities.J Mater Chem A2018;6:18853-8

[80]

Yan M,Zuo T.Stabilizing polymer-lithium interface in a rechargeable solid battery.Adv Funct Mater2019;30:1908047

[81]

Ruan Y,Huang X.Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries.J Mater Chem A2019;7:14565-74

[82]

Alexander GV,Kamakshy S.Development of stable and conductive interface between garnet structured solid electrolyte and lithium metal anode for high performance solid-state battery.Electrochimica Acta2020;332:135511

[83]

Cui C,Eidson N.A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase.Adv Mater2020;32:e1906427

[84]

Fan X,Han F.Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery.Sci Adv2018;4:eaau9245 PMCID:PMC6303121

[85]

Xu R,Ji X,Tu J.Interface engineering of sulfide electrolytes for all-solid-state lithium batteries.Nano Energy2018;53:958-66

[86]

Xu H,Zhou A.Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C.Nano Lett2018;18:7414-8

[87]

Tian Y,Zhong H.Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries.Energy Storage Materials2018;14:49-57

PDF

61

Accesses

0

Citation

Detail

Sections
Recommended

/