From Diabetes to Diabetic Complications: Role of Autophagy

Lin-hua Wang , Yang-yang Wang , Lian Liu , Quan Gong

Current Medical Science ›› 2023, Vol. 43 ›› Issue (3) : 434 -444.

PDF
Current Medical Science ›› 2023, Vol. 43 ›› Issue (3) : 434 -444. DOI: 10.1007/s11596-023-2727-4
Article

From Diabetes to Diabetic Complications: Role of Autophagy

Author information +
History +
PDF

Abstract

Diabetes and its complications reduce quality of life and are life-limiting. At present, diabetes treatment consists of hypoglycemic agents to control blood glucose and the use of insulin-sensitizing drugs to overcome insulin resistance. In diabetes, autophagy is impaired and thus there is poor intracellular environment homeostasis. Pancreatic β-cells and insulin target tissues are protected by enhancing autophagy. Autophagy decreases β-cell apoptosis, promotes β-cell proliferation, and alleviates insulin resistance. Autophagy in diabetes is regulated by the mammalian target of rapamycin (mTOR)/adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) pathway and others. Autophagy enhancers can likely be used as a treatment for diabetes and its complications. This review examines the evidence linking autophagy to diabetes.

Keywords

autophagy / diabetes / diabetic complications / mechanism

Cite this article

Download citation ▾
Lin-hua Wang, Yang-yang Wang, Lian Liu, Quan Gong. From Diabetes to Diabetic Complications: Role of Autophagy. Current Medical Science, 2023, 43(3): 434-444 DOI:10.1007/s11596-023-2727-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SaeediP, PetersohnI, SalpeaP, et al.. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 edition. Diabetes Res Clin Pract, 2019, 157: 107843

[2]

Coomans de BracheneA, ScoubeauC, MusuayaAE, et al.. Exercise as a non-pharmacological intervention to protect pancreatic beta cells in individuals with type 1 and type 2 diabetes. Diabetologia, 2023, 66(3): 450-460

[3]

EizirikDL, PasqualiL, CnopM. Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol, 2020, 16(7): 349-362

[4]

HuangDD, ShiG, JiangY, et al.. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother, 2020, 125: 109767

[5]

BarlowAD, ThomasDC. Autophagy in diabetes: β-cell dysfunction, insulin resistance, and complications. DNA Cell Biol, 2015, 34(4): 252-260

[6]

LeeYH, KimJ, ParkK, et al.. beta-cell autophagy: Mechanism and role in beta-cell dysfunction. Mol Metab, 2019, 27S(Suppl): S92-S103

[7]

LevineB, KroemerG. Biological Functions of Autophagy Genes: A Disease Perspective. Cell, 2019, 176(1–2): 11-42

[8]

DikicI, ElazarZ. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364

[9]

KlionskyDJ, PetroniG, AmaravadiRK, et al.. Autophagy in major human diseases. EMBO J, 2021, 40(19): e108863

[10]

GalluzziL, GreenDR. Autophagy-Independent Functions of the Autophagy Machinery. Cell, 2019, 177(7): 1682-1699

[11]

RiahiY, WikstromJD, Bachar-WikstromE, et al.. Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia, 2016, 59(7): 1480-1491

[12]

MazzaS, MaffucciT. Autophagy and pancreatic β-cells. Vitam Horm, 2014, 95: 145-164

[13]

XiaoJ, LiJ, CaiL, et al.. Cytokines and diabetes research. J Diabetes Res, 2014, 2014: 920613

[14]

KimJ, LimYM, LeeMS. The Role of Autophagy in Systemic Metabolism and Human-Type Diabetes. Mol Cells, 2018, 41(1): 11-17

[15]

Ning C, Wang X, Gao S, et al. Chicory inulin ameliorates type 2 diabetes mellitus and suppresses JNK and MAPK pathways in vivo and in vitro. Mol Nutr Food Res, 2017,61(8):doi: https://doi.org/10.1002/mnfr.201600673

[16]

ZhouYY, LiY, JiangWQ, et al.. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep, 2015, 35(3): e00199

[17]

MadhaviYV, GaikwadN, YerraVG, et al.. Targeting AMPK in Diabetes and Diabetic Complications: Energy Homeostasis, Autophagy and Mitochondrial Health. Curr Med Chem, 2019, 26(27): 5207-5229

[18]

RenH, ShaoY, WuC, et al.. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol, 2020, 500: 110628

[19]

AoyagiK, Ohara-ImaizumiM, ItakuraM, et al.. VAMP7 Regulates Autophagy to Maintain Mitochondrial Homeostasis and to Control Insulin Secretion in Pancreatic β-Cells. Diabetes, 2016, 65(6): 1648-1659

[20]

TianX, ZhengP, ZhouC, et al.. DIPK2A promotes STX17- and VAMP7-mediated autophagosome-lysosome fusion by binding to VAMP7B. Autophagy, 2020, 16(5): 797-810

[21]

LambeletM, TerraLF, FukayaM, et al.. Dysfunctional autophagy following exposure to pro-inflammatory cytokines contributes to pancreatic β-cell apoptosis. Cell Death Dis, 2018, 9(2): 96

[22]

AkbariM, Hassan-ZadehV. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology, 2018, 26(3): 685-698

[23]

RajendranS, AnquetilF, Quesada-MasachsE, et al.. IL-6 is present in beta and alpha cells in human pancreatic islets: Expression is reduced in subjects with type 1 diabetes. Clin Immunol, 2020, 211: 108320

[24]

WangP, FengYB, WangLY, et al.. Interleukin-6: Its role and mechanisms in rescuing depression-like behaviors in rat models of depression. Brain Behav Immun, 2019, 82: 106-121

[25]

BillahM, RidiandriesA, AllahwalaUK, et al.. Remote Ischemic Preconditioning induces Cardioprotective Autophagy and Signals through the IL-6-Dependent JAK-STAT Pathway. Int J Mol Sci, 2020, 21(5): 1692

[26]

LinnemannAK, BlumerJ, MarascoMR, et al.. Interleukin 6 protects pancreatic β cells from apoptosis by stimulation of autophagy. FASEB J, 2017, 31(9): 4140-4152

[27]

MarascoMR, ContehAM, ReissausCA, et al.. Interleukin-6 Reduces beta-Cell Oxidative Stress by Linking Autophagy With the Antioxidant Response. Diabetes, 2018, 67(8): 1576-1588

[28]

RicklinD, ReisES, MastellosDC, et al.. Complement component C3 — The “Swiss Army Knife” of innate immunity and host defense. Immunol Rev, 2016, 274(1): 33-58

[29]

KingBC, KulakK, KrusU, et al.. Complement Component C3 Is Highly Expressed in Human Pancreatic Islets and Prevents beta Cell Death via ATG16L1 Interaction and Autophagy Regulation. Cell Metab, 2019, 29(1): 202-210.e6

[30]

Rovira-LlopisS, ApostolovaN, BañulsC, et al.. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal, 2018, 29(8): 749-791

[31]

DaiJ, ZhangX, LiL, et al.. Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages. Cell Physiol Biochem, 2017, 43(1): 247-256

[32]

SaitohT, FujitaN, JangMH, et al.. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 2008, 456(7219): 264-268

[33]

WuM, ChenW, ZhangS, et al.. Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus. Apoptosis, 2019, 24(11–12): 879-891

[34]

LiuH, JavaheriA, GodarRJ, et al.. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy, 2017, 13(11): 1952-1968

[35]

ZummoFP, CullenKS, Honkanen-ScottM, et al.. Glucagon-Like Peptide 1 Protects Pancreatic β-Cells From Death by Increasing Autophagic Flux and Restoring Lysosomal Function. Diabetes, 2017, 66(5): 1272-1285

[36]

SongS, TanJ, MiaoY, et al.. Intermittent-Hypoxia-Induced Autophagy Activation Through the ER-Stress-Related PERK/eIF2α/ATF4 Pathway is a Protective Response to Pancreatic β-Cell Apoptosis. Cell Physiol Biochem, 2018, 51(6): 2955-2971

[37]

ZhaoT, MaJ, LiL, et al.. MKP-5 Relieves Lipotoxicity-Induced Islet β-Cell Dysfunction and Apoptosis via Regulation of Autophagy. Int J Mol Sci, 2020, 21(19): 7161

[38]

SongZ, MaJ, LuY, et al.. The protective role of the MKP-5-JNK/P38 pathway in glucolipotoxicity-induced islet beta-cell dysfunction and apoptosis. Exp Cell Res, 2019, 382(1): 111467

[39]

BaiC, YangW, LuY, et al.. Identification of Circular RNAs Regulating Islet-Cell Autophagy in Type 2 Diabetes Mellitus. Biomed Res Int, 2019, 2019: 4128315

[40]

FanM, JiangH, ZhangY, et al.. Liraglutide Enhances Autophagy and Promotes Pancreatic beta Cell Proliferation to Ameliorate Type 2 Diabetes in High-Fat-Fed and Streptozotocin-Treated Mice. Med Sci Monit, 2018, 24: 2310-2316

[41]

MiaoXY, GuZ Y, LiuP, et al.. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides, 2013, 39: 71-79

[42]

PetersenMC, ShulmanGI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev, 2018, 98(4): 2133-2223

[43]

ZhouW, YeS. Rapamycin improves insulin resistance and hepatic steatosis in type 2 diabetes rats through activation of autophagy. Cell Biol Int, 2018, 42(10): 1282-1291

[44]

ChanYK, SungHK, JahngJWS, et al.. Lipocalin-2 inhibits autophagy and induces insulin resistance in H9c2 cells. Mol Cell Endocrinol, 2016, 430: 68-76

[45]

CaiJ, PiresKM, FerhatM, et al.. Autophagy Ablation in Adipocytes Induces Insulin Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk. Cell Rep, 2018, 25(7): 1708-1717.e5

[46]

XieT, SoWY, LiXY, et al.. Fibroblast growth factor 21 protects against lipotoxicity-induced pancreatic β-cell dysfunction via regulation of AMPK signaling and lipid metabolism. Clin Sci, 2019, 133(19): 2029-2044

[47]

ChengSTW, LiSYT, LeungPS. Fibroblast Growth Factor 21 Stimulates Pancreatic Islet Autophagy via Inhibition of AMPK-mTOR Signaling. Int J Mol Sci, 2019, 20(10): 2517

[48]

YuanY, ChenY, PengT, et al.. Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin Sci, 2019, 133(15): 1759-1777

[49]

AoyagiK, ItakuraM, FukutomiT, et al.. VAMP7 Regulates Autophagosome Formation by Supporting Atg9a Functions in Pancreatic β-Cells From Male Mice. Endocrinology, 2018, 159(11): 3674-3688

[50]

FuenteFP, NocettiD, SacristánC, et al.. Physalis peruviana L. Pulp Prevents Liver Inflammation and Insulin Resistance in Skeletal Muscles of Diet-Induced Obese Mice. Nutrients, 2020, 12(3): 700

[51]

LiX, GongH, YangS, et al.. Pectic Bee Pollen Polysaccharide from Rosa rugosa Alleviates Diet-Induced Hepatic Steatosis and Insulin Resistance via Induction of AMPK/mTOR-Mediated Autophagy. Molecules, 2017, 22(5): 699

[52]

YangL, LiP, FuS, et al.. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab, 2010, 11(6): 467-478

[53]

ZhengW, ZhouJ, SongS, et al.. Dipeptidyl-Peptidase 4 Inhibitor Sitagliptin Ameliorates Hepatic Insulin Resistance by Modulating Inflammation and Autophagy in ob/ob Mice. Int J Endocrinol, 2018, 2018: 8309723

[54]

GaoN, YaoX, JiangL, et al.. Taurine improves low-level inorganic arsenic-induced insulin resistance by activating PPARγ-mTORC2 signalling and inhibiting hepatic autophagy. J Cell Physiol, 2019, 234(4): 5143-5152

[55]

QianQ, ZhangZ, LiM, et al.. Hepatic Lysosomal iNOS Activity Impairs Autophagy in Obesity. Cell Mol Gastroenterol Hepatol, 2019, 8(1): 95-110

[56]

QianQ, ZhangZ, OrwigA, et al.. S-Nitrosoglutathione Reductase Dysfunction Contributes to Obesity-Associated Hepatic Insulin Resistance via Regulating Autophagy. Diabetes, 2018, 67(2): 193-207

[57]

RizzaS, CardaciS, MontagnaC, et al.. S-nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proc Natl Acad Sci USA, 2018, 115(15): E3388-E3397

[58]

MøllerAB, KampmannU, HedegaardJ, et al.. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep, 2017, 7: 43775

[59]

YangL, QiuT, YaoX, et al.. Taurine protects against arsenic trioxide-induced insulin resistance via ROS-Autophagy pathway in skeletal muscle. Int J Biochem Cell Biol, 2019, 112: 50-60

[60]

CuiD, DrakeJC, WilsonRJ, et al.. A novel voluntary weightlifting model in mice promotes muscle adaptation and insulin sensitivity with simultaneous enhancement of autophagy and mTOR pathway. FASEB J, 2020, 34(6): 7330-7344

[61]

ShiL, ZhangT, LiangX, et al.. Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol Cell Endocrinol, 2015, 409: 92-102

[62]

YangL, LinH, LinW, et al.. Exercise Ameliorates Insulin Resistance of Type 2 Diabetes through Motivating Short-Chain Fatty Acid-Mediated Skeletal Muscle Cell Autophagy. Biology, 2020, 9(8): 203

[63]

BódisK, RodenM. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur J Clin Invest, 2018, 48(11): e13017

[64]

ZhouB, LiH, LiuJ, et al.. Progranulin induces adipose insulin resistance and autophagic imbalance via TNFR1 in mice. J Mol Endocrinol, 2015, 55(3): 231-243

[65]

GuoQ, XuL, LiH, et al.. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress. Lipids Health Dis, 2017, 16(1): 25

[66]

GuoQ, XuL, LiH, et al.. 4-PBA reverses autophagic dysfunction and improves insulin sensitivity in adipose tissue of obese mice via Akt/mTOR signaling. Biochem Biophys Res Commun, 2017, 484(3): 529-535

[67]

OstA, SvenssonK, RuishalmeI, et al.. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med, 2010, 16(7–8): 235-246

[68]

AudzeyenkaI, BierzynskaA, LayAC. Podocyte Bioenergetics in the Development of Diabetic Nephropathy: The Role of Mitochondria. Endocrinology, 2022, 163(1): bqab234

[69]

YangD, LivingstonMJ, LiuZ, et al.. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci, 2018, 75(4): 669-688

[70]

LiangQ, LiuT, GuoT, et al.. ATF4 promotes renal tubulointerstitial fibrosis by suppressing autophagy in diabetic nephropathy. Life Sci, 2021, 264: 118686

[71]

YassinR, TadmorH, FarberE, et al.. Alteration of autophagy-related protein 5 (ATG5) levels and Atg5 gene expression in diabetes mellitus with and without complications. Diab Vasc Dis Res, 2021, 18(6): 14791641211062050

[72]

TagawaA, YasudaM, KumeS, et al.. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy. Diabetes, 2016, 65(3): 755-767

[73]

LenoirO, JasiekM, HéniqueC, et al.. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy, 2015, 11(7): 1130-1145

[74]

MaZ, LiL, LivingstonMJ, et al.. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. J Clin Invest, 2020, 130(9): 5011-5026

[75]

ChenD, LiuY, ChenJ, et al.. JAK/STAT pathway promotes the progression of diabetic kidney disease via autophagy in podocytes. Eur J Pharmacol, 2021, 902: 174121

[76]

YangC, ChenXC, LiZH, et al.. SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy. Autophagy, 2021, 17(9): 2325-2344

[77]

DusabimanaT, ParkEJ, JeJ, et al.. Geniposide Improves Diabetic Nephropathy by Enhancing ULK1-Mediated Autophagy and Reducing Oxidative Stress through AMPK Activation. Int J Mol Sci, 2021, 22(4): 1651

[78]

TuQ, LiY, JinJ, et al.. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. Pharm Biol, 2019, 57(1): 778-786

[79]

JinD, LiuF, YuM, et al.. Jiedu Tongluo Baoshen formula enhances podocyte autophagy and reduces proteinuria in diabetic kidney disease by inhibiting PI3K/Akt/mTOR signaling pathway. J Ethnopharmacol, 2022, 293: 115246

[80]

MiaoY, GuoD, LiW, et al.. Diabetes Promotes Development of Alzheimer’s Disease Through Suppression of Autophagy. J Alzheimers Dis, 2019, 69(1): 289-296

[81]

JingYH, ZhangL, GaoLP, et al.. Autophagy plays beneficial effect on diabetic encephalopathy in type 2 diabetes: studies in vivo and in vitro. Neuro Endocrinol Lett, 2017, 38(1): 27-37

[82]

KongFJ, MaLL, GuoJJ, et al.. Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci, 2018, 132(1): 111-125

[83]

LiZ, HaoS, YinH, et al.. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav Brain Res, 2016, 305: 265-277

[84]

ZhengJ, WangY, LiuY, et al.. cPKCgamma Deficiency Exacerbates Autophagy Impairment and Hyperphosphorylated Tau Buildup through the AMPK/mTOR Pathway in Mice with Type 1 Diabetes Mellitus. Neurosci Bull, 2022, 38(10): 1153-1169

[85]

KongFJ, WuJH, SunSY, et al.. Liraglutide ameliorates cognitive decline by promoting autophagy via the AMP-activated protein kinase/mammalian target of rapamycin pathway in a streptozotocin-induced mouse model of diabetes. Neuropharmacology, 2018, 131: 316-325

[86]

CuiY, YangM, WangY, et al.. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J, 2021, 35(4): e21485

[87]

GuanY, ZhouL, ZhangY, et al.. Effects of PP2A/Nrf2 on experimental diabetes mellitus-related cardiomyopathy by regulation of autophagy and apoptosis through ROS dependent pathway. Cell Signal, 2019, 62: 109339

[88]

ZhangL, DingWY, WangZH, et al.. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J Transl Med, 2016, 14(1): 109

[89]

YuW, GaoB, LiN, et al.. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8): 1973-1983

[90]

YaoQ, KeZQ, GuoS, et al.. Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis. J Mol Cell Cardiol, 2018, 124: 26-34

[91]

WuMX, WangSH, XieY, et al.. Interleukin-33 alleviates diabetic cardiomyopathy through regulation of endoplasmic reticulum stress and autophagy via insulin-like growth factor-binding protein 3. J Cell Physiol, 2021, 236(6): 4403-4419

[92]

YuW, ZhaW, RenJ. Exendin-4 and Liraglutide Attenuate Glucose Toxicity-Induced Cardiac Injury through mTOR/ULK1-Dependent Autophagy. Oxid Med Cell Longev, 2018, 2018: 5396806

[93]

WangH, WangL, HuF, et al.. Neuregulin-4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway. Cardiovasc Diabetol, 2022, 21(1): 205

[94]

ZhouP, XieW, MengX, et al.. Notoginsenoside R1 Ameliorates Diabetic Retinopathy through PINK1-Dependent Activation of Mitophagy. Cells, 2019, 8(3): 213

[95]

WangN, WeiL, LiuD, et al.. Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy. Front Endocrinol, 2022, 13: 867600

[96]

GaoX, DuY, LauW B, et al.. Atg16L1 as a Novel Biomarker and Autophagy Gene for Diabetic Retinopathy. J Diabetes Res, 2021, 2021: 5398645

[97]

FengL, LiangL, ZhangS, et al.. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy, 2022, 18(2): 320-339

[98]

WangL, SunX, ZhuM, et al.. Epigallocatechin-3-gallate stimulates autophagy and reduces apoptosis levels in retinal Müller cells under high-glucose conditions. Exp Cell Res, 2019, 380(2): 149-158

[99]

LuoY, DongX, LuS, et al.. Gypenoside XVII alleviates early diabetic retinopathy by regulating Muller cell apoptosis and autophagy in db/db mice. Eur J Pharmacol, 2021, 895: 173893

[100]

WangW, WangQ, WanD, et al.. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy. Autophagy, 2017, 13(5): 941-954

[101]

ParkHYL, KimJH, ParkCK. Different contributions of autophagy to retinal ganglion cell death in the diabetic and glaucomatous retinas. Sci Rep, 2018, 8(1): 13321

[102]

Li L, Chen J, Zhou Y, et al. Artesunate alleviates diabetic retinopathy by activating autophagy via the regulation of AMPK/SIRT1 pathway. Arch Physiol Biochem, 2021, doi:https://doi.org/10.1080/13813455.2021.1887266

[103]

MirSUR, GeorgeNM, ZahoorL, et al.. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem, 2015, 290(10): 6071-6085

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/