Epigenetic reprogramming during fertilization and somatic cell nuclear transfer (NT) is required for cell plasticity and competent development. Here, we characterize the epigenetic modification pattern of H4K20me3, a repressive histone signature in heterochromatin, during fertilization and NT reprogramming. Importantly, the dynamic H4K20me3 signature identified during preimplantation development in fertilized embryos differed from NT and parthenogenetic activation (PA) embryos. In fertilized embryos, only maternal pronuclei carried the canonical H4K20me3 peripheral nucleolar ring-like signature. H4K20me3 disappeared at the 2-cell stage and reappeared in fertilized embryos at the 8-cell stage and in NT and PA embryos at the 4-cell stage. H4K20me3 intensity in 4-cell, 8-cell, and morula stages of fertilized embryos was significantly lower than in NT and PA embryos, suggesting aberrant regulation of H4K20me3 in PA and NT embryos. Indeed, RNA expression of the H4K20 methyltransferase Suv4-20h2 in 4-cell fertilized embryos was significantly lower than NT embryos. Knockdown of Suv4-20h2 in NT embryos rescued the H4K20me3 pattern similar to fertilized embryos. Compared to control NT embryos, knockdown of Suv4-20h2 in NT embryos improved blastocyst development ratios (11.1% vs. 30.5%) and full-term cloning efficiencies (0.8% vs. 5.9%). Upregulation of reprogramming factors, including Kdm4b, Kdm4d, Kdm6a, and Kdm6b, as well as ZGA-related factors, including Dux, Zscan4, and Hmgpi, was observed with Suv4-20h2 knockdown in NT embryos. Collectively, these are the first findings to demonstrate that H4K20me3 is an epigenetic barrier of NT reprogramming and begin to unravel the epigenetic mechanisms of H4K20 trimethylation in cell plasticity during natural reproduction and NT reprogramming in mice.
Thermogenesis in brown adipose tissue (BAT) declines with aging, however, the underlying mechanism remains unclear. Here, we show that the expression of Y-box binding protein 1 (YB-1), a critical DNA/RNA binding protein, decreased in the BAT of aged mice due to the reduction of microbial metabolite butyrate. Genetic ablation of YB-1 in the BAT accelerated diet-induced obesity and BAT thermogenic dysfunction. In contrast, overexpression of YB-1 in the BAT of aged mice was sufficient to promote BAT thermogenesis, thus alleviating diet-induced obesity and insulin resistance. Interestingly, YB-1 had no direct effect on adipose UCP1 expression. Instead, YB-1 promoted axon guidance of BAT via regulating the expression of Slit2, thus potentiating sympathetic innervation and thermogenesis. Moreover, we have identified that a natural compound Sciadopitysin, which promotes YB-1 protein stability and nuclear translocation, alleviated BAT aging and metabolic disorders. Together, we reveal a novel fat-sympathetic nerve unit in regulating BAT senescence and provide a promising strategy against age-related metabolic disorders.
Trauma-induced heterotopic ossification (HO) is a complex disorder after musculoskeletal injury and characterized by aberrant extraskeletal bone formation. Recent studies shed light on critical role of dysregulated osteogenic differentiation in aberrant bone formation. Krupel-like factor 2 (KLF2) and peroxisome proliferator-activated receptor gamma (PPARγ) are master adapter proteins that link cellular responses to osteogenesis; however, their roles and relationships in HO remain elusive. Using a murine burn/tenotomy model in vivo, we identified elevated KLF2 and reduced PPARγ levels in tendon stem/progenitor cells (TSPCs) during trauma-induced HO formation. Both KLF2 inhibition and PPARγ promotion reduced mature HO, whereas the effects of PPARγ promotion were abolished by KLF2 overexpression. Additionally, mitochondrial dysfunction and reactive oxygen species (ROS) production also increased after burn/tenotomy, and improvements in mitochondrial function (ROS scavenger) could alleviate HO formation, but were abolished by KLF2 activation and PPARγ suppression by affecting redox balance. Furthermore, in vitro, we found increased KLF2 and decreased PPARγ levels in osteogenically induced TSPCs. Both KLF2 inhibition and PPARγ promotion relieved osteogenesis by improving mitochondrial function and maintaining redox balance, and effects of PPARγ promotion were abolished by KLF2 overexpression. Our findings suggest that KLF2/PPARγ axis exerts regulatory effects on trauma-induced HO through modulation of mitochondrial dysfunction and ROS production in TSPCs by affecting redox balance. Targeting KLF2/PPARγ axis and mitochondrial dysfunction can represent attractive approaches to therapeutic intervention in trauma-induced HO.
Our previous finding revealed that the Wnt10b RNA expression of osteoporotic adipose-derived stem cells (OP-ASCs) with impaired osteogenic capacity was significantly reduced than that of ASCs. There are no ideas that the relationship between the OP-ASCs' impaired osteogenic potential and Wnt10b expression. This study aimed to indicate the potential molecular mechanisms and functional role of Wnt10b in OP-ASCs, as well as to investigate a potential application to reverse the OP-ASCs' impaired osteogenic differentiation potential. The OP-ASCs and ASCs were harvested from the inguinal fat of osteoporosis (OP) mice with bilateral ovariectomy (OVX) and normal mice. qPCR and WB were used to detect the different levels of the expression of the Wnt10b RNA in both OP-ASCs and ASCs. Lentiviral-mediated regulation of Wnt10b expression was employed for OP-ASCs, and the detection of the expression levels of key molecules in the Wnt signalling pathway and key osteogenic factors was performed through qPCR and WB in vitro experiments. The capacity of OP-ASCs to osteogenesis was determined using alizarin red staining. Lastly, the repair effect of the BCP scaffolds incorporating modified OP-ASCs on the critical-sized calvarial defects (CSCDs) in OP mice was scanned and detected by micro-computed tomography, haematoxylin and eosin staining, Masson's trichrome staining and immunohistochemistry. First, we discovered that both the RNA and protein expression levels of Wnt10b were significantly lower in OP-ASCs than that in ASCs. In vitro experiments, upregulation of Wnt10b could activate the Wnt signalling pathway, and increase expression of β-catenin, Lef1, Runx2 and osteopontin (Opn), thereby enhancing the osteogenic ability of OP-ASCs. In addition, the OP-ASCs with Wnt10b-overexpressing could promote the repair of CSCD in osteoporotic mice with increasing new bone volume, bone mineral density, and increased expression of Opn in new bone in vivo. Taken together, overexpression of Wnt10b could partially facilitate the differentiation of OP-ASCs towards osteogenesis and accelerated the healing of bone defects by activating the Wnt/β-catenin signalling pathway in vitro and in vivo experiments. This study confirmed the important role of Wnt10b in regulating the osteogenic differentiation capability of OP-ASCs and indicated Wnt10b could be a potential therapeutic target for reversing the impaired osteogenic capabilities of OP-ASCs to therapy bone defects of OP patients.
Adult stem cells (ASCs) are pluripotent cells with the capacity to self-renew and constantly replace lost cells due to physiological turnover or injury. Understanding the molecular mechanisms of the precise coordination of stem cell proliferation and proper cell fate decision is important to regeneration and organismal homeostasis. The planarian epidermis provides a highly tractable model to study ASC complex dynamic due to the distinct spatiotemporal differentiation stages during lineage development. Here, we identified the myosin regulatory light chain (MRLC) homologue in the Dugesia japonica transcriptome. We found high expression levels of MRLC in wound region during regeneration and also expressed in late epidermal progenitors as an essential regulator of the lineage from neoblasts to mature epidermal cells. We investigated the function of MRLC using in situ hybridization, real-time polymerase chain reaction and double fluorescent and uncovered the potential mechanism. Knockdown of MRLC leads to a remarkable increase in cell death, causes severe abnormalities during regeneration and homeostasis and eventually leads to animal death. The global decrease in epidermal cell in MRLC RNAi animals induces accelerated epidermal proliferation and differentiation. Additionally, we find that MRLC is co-expressed with cdc42 and acts cooperatively to control the epidermal lineage development by affecting cell death. Our results uncover an important role of MRLC, as an inhibitor of apoptosis, involves in epidermal development.
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Early embryonic loss, caused by reduced embryo developmental competence, is the major cause of subfertility in humans and animals. This embryo developmental competence is determined during oocyte maturation and the first embryo divisions. Therefore, it is essential to identify the underlying molecules regulating these critical developmental stages. Cathepsin L (CTSL), a lysosomal cysteine protease, is involved in regulating cell cycle progression, proliferation and invasion of different cell types. However, CTSL role in mammalian embryo development is unknown. Using bovine in vitro maturation and culture systems, we show that CTSL is a key regulator for embryo developmental competence. We employed a specific CTSL detection assay in live cells to show that CTSL activity correlates with meiotic progression and early embryo development. Inhibiting CTSL activity during oocyte maturation or early embryo development significantly impaired oocyte and embryo developmental competence as evidenced by lower cleavage, blastocyst and hatched blastocyst rates. Moreover, enhancing CTSL activity, using recombinant CTSL (rCTSL), during oocyte maturation or early embryo development significantly improved oocyte and embryo developmental competence. Importantly, rCTSL supplementation during oocyte maturation and early embryo development significantly improved the developmental competence of heat-shocked oocytes/embryos which are notoriously known for reduced quality. Altogether, these results provide novel evidence that CTSL plays a pivotal role in regulating oocyte meiosis and early embryonic development.
Cellular spheroids have been described as an appropriate culture system to restore human follicle dermal papilla cells (hFDPc) intrinsic properties; however, they show a low and variable efficiency to promote complete hair follicle formation in in vivo experiments. In this work, a conscientious analysis revealed a 25% cell viability in the surface of the dermal papilla spheroid (DPS) for all culture conditions, questioning whether it is an appropriate culture system for hFDPc. To overcome this problem, we propose the use of human blood plasma for the generation of fibrin microgels (FM) with encapsulated hFDPc to restore its inductive signature, either in the presence or in the absence of blood platelets. FM showed a morphology and extracellular matrix composition similar to the native dermal papilla, including Versican and Collagen IV and increasing cell viability up to 85%. While both systems induce epidermal invaginations expressing hair-specific keratins K14, K15, K71, and K75 in in vitro skin cultures, the number of generated structures increases from 17% to 49% when DPS and FM were used, respectively. These data show the potential of our experimental setting for in vitro hair follicle neogenesis with wild adult hFDPc using FM, being a crucial step in the pursuit of human hair follicle regeneration therapies.
Neutrophil is a pathophysiological character in Alzheimer's disease. The pathogen for neutrophil activation in cerebral tissue is the accumulated amyloid protein. In our present study, neutrophils infiltrate into the cerebra in two models (transgenic model APP/PS1 and stereotactic injection model) and promote neuron apoptosis, releasing their cellular constituents, including mitochondria and mitochondrial DNA (mtDNA). We found that both Aβ1–42 and mtDNA could provoke neutrophil infiltration into the cerebra, and they had synergistic effects when they presented together. This neutrophillic neuroinflammation upregulates expressions of STING, NLRP3 and IL-1β. These inflammatory cytokines with mtDNA constitute the mtDNA-STING-NLRP3/IL-1β axis, which is the prerequisite for neutrophil infiltration. When any factor in this pathway is depleted, the migration of neutrophils into cerebral tissue is ceased, with neurons and cognitive function being protected. Thus, we provide a novel perspective to alleviate the progression of Alzheimer's disease.
Dental pulp injury remains a clinical challenge with limited therapeutic approaches. In the present study, we sought to prove that dental pulp stromal cells (DPSCs) mitochondrial transfer could promote dental pulp injury repair and endoplasmic reticulum (ER)-mitochondrial contacts have a significant regulatory effect on mitochondrial transfer. Healthy DPSCs were co-cultured directly or indirectly with injured DPSCs in the first molar of 1–2 month SD rats or in vitro. Mitochondrial transfer was observed after 24 h of co-culture using fluorescence microscopy and live cell workstation. After co-culture for 1W, 8-OhdG immunofluorescence, mitochondrial membrane potential and total oxidant status/total antioxidant status were used to detect the mitochondrial function of injured DPSCs before and after mitochondrial transfer. Subsequently, mitochondria-ER co-transfer was regulated by modulating mitochondria-ER binding in healthy DPSCs, and the results of GRP78 and CHOP in DPSCs, and PDI immunofluorescence and haematoxylin and eosin staining of pulp tissue were analysed to clarify the effects of modulating mitochondria-ER co-transfer on endoplasmic reticulum stress (ERS), and on pulp injury repair. Fluorescence microscopy and live cell workstation results showed significant mitochondrial transfer between DPSCs. Meanwhile, mitochondrial transfer significantly restored mitochondrial function in injured DPSCs. By modulating mitochondrial-ER binding, the efficiency of mitochondrial transfer between DPSCs was significantly affected and had an impact on ERS in injured cells. Mitochondrial transfer of DPSCs significantly promotes pulpal injury repair and functional recovery of damaged DPSCs, and mitochondrial transfer of DPSCs is regulated by mitochondria-ER binding.
Apoptosis triggers immunoregulation to prevent and suppress inflammation and autoimmunity. However, the mechanism by which apoptotic cells modulate immune responses remains largely elusive. In the context of allogeneic mesenchymal stem cells (MSCs) transplantation, long-term immunoregulation is observed in the host despite the short survive of the injected MSCs. In this study, utilizing a mouse model of acute lung injury (ALI), we demonstrate that apoptotic bodies (ABs) released by transplanted human umbilical cord MSCs (UC-MSCs) convert the macrophages from a pro-inflammatory to an anti-inflammatory state, thereby ameliorating the disease. Mechanistically, we identify the expression of programmed cell death 1 ligand 1 (PDL1) on the membrane of UC-MSCs-derived ABs, which interacts with programmed cell death protein 1 (PD1) on host macrophages. This interaction leads to the reprogramming of macrophage metabolism, shifting from glycolysis to mitochondrial oxidative phosphorylation via the Erk-dependent pathway in ALI. Importantly, we have reproduced the PDL1–PD1 effects of ABs on metabolic switch using alveolar macrophages from patients with ALI, suggesting the potential clinical implications of developing therapeutic strategies for the patients.
Primordial germ cells (PGCs) are the germline precursors that give rise to oocytes and sperm, ensuring the continuation of life. While the PGC specification is extensively studied, it remains elusive how the PGC population is sustained and expanded after they migrate to embryonic gonads before birth. This study demonstrates that NRF1, a known regulator for mitochondrial metabolism, plays critical roles in post-migrating PGC development. We show that NRF1 protein level gradually increases in post-migrating PGCs during embryonic development. Conditional Nrf1 knockout from embryonic germ cells leads to impaired PGC proliferation and survival. In addition, NRF1 may also actively drive PGC derivation from pluripotent stem cells. Using whole genome transcriptome profiling and ChIP-seq analyses, we further reveal that NRF1 directly regulates key signalling molecules in PGC formation, transcription factors in proliferation and cell cycle and enzymes in mitochondrial metabolism. Overall, our findings highlight an essential requirement of NRF1 in regulating a broad transcriptional network to support post-migrating PGC development both in vitro and in vivo.
Periodontal disease and arthroplasty prosthesis loosening and destabilization are both associated with osteolysis, which is predominantly caused by abnormal bone resorption triggered by pro-inflammatory cytokines. Osteoclasts (OCs) are critical players in the process. Concerns regarding the long-term efficacy and side effects of current frontline therapies, however, remain. Alternative therapies are still required. The aim of this work was to investigate the involvement of Tenacissoside H (TDH) in RANKL-mediated OC differentiation, as well as inflammatory osteolysis and associated processes. In vitro, bone marrow-derived macrophages (BMMs) cultured with RANKL and M-CSF were used to detect TDH in the differentiation and function of OCs. Real-time quantitative PCR was used to measure the expression of specific genes and inflammatory factors in OCs. Western blot was used to identify NFATc1, IKK, NF-κB, MAPK pathway, and oxidative stress-related components. Finally, an LPS-mediated calvarial osteolysis mouse model was employed to explore TDH's role in inflammatory osteolysis. The results showed that in vivo TDH inhibited the differentiation and resorption functions of OCs and down-regulated the transcription of osteoclast-specific genes, as well as Il-1β, Il-6 and Tnf-α. In addition, TDH inhibited the IKK and NF-κB signalling pathways and down-regulated the level of ROS. In vivo studies revealed that TDH improves the bone loss caused by LPS. TDH may be a new candidate or treatment for osteoclast-associated inflammatory osteolytic disease.
Enteric glial cells in the enteric nervous system are critical for the regulation of gastrointestinal homeostasis. Increasing evidence suggests two-way communication between enteric glial cells and both enteric neurons and immune cells. These interactions may be important in the pathogenesis of Crohn's disease (CD), a chronic relapsing disease characterized by a dysregulated immune response. Structural abnormalities in glial cells have been identified in CD. Furthermore, classical inflammatory pathways associated with CD (e.g., the nuclear factor kappa-B pathway) function in enteric glial cells. However, the specific mechanisms by which enteric glial cells contribute to CD have not been summarized in detail. In this review, we describe the possible roles of enteric glial cells in the pathogenesis of CD, including the roles of glia–immune interactions, neuronal modulation, neural plasticity, and barrier integrity. Additionally, the implications for the development of therapeutic strategies for CD based on enteric glial cell-mediated pathogenic processes are discussed.
Neutrophil extracellular trap (NET) has been confirmed to be related to gut barrier injury during intestinal ischaemia–reperfusion (II/R). However, the specific molecular regulatory mechanism of NETs in II/R-induced intestinal barrier damage has yet to be fully elucidated. Here, we reported increased NETs infiltration accompanied by elevated inflammatory cytokines, cellular necroptosis and tight junction disruption in the intestine of human II/R patients. Meanwhile, NETs aggravated Caco-2 intestinal epithelial cell necroptosis, impairing the monolayer barrier in vitro. Moreover, Pad4-deficient mice were used further to validate the role of NETs in II/R-induced intestinal injury. In contrast, NET inhibition via Pad4 deficiency alleviated intestinal inflammation, attenuated cellular necroptosis, improved intestinal permeability, and enhanced tight junction protein expression. Notably, NETs prevented FUN14 domain-containing 1 (FUNDC1)-required mitophagy activation in intestinal epithelial cells, and stimulating mitophagy attenuated NET-associated mitochondrial dysfunction, cellular necroptosis, and intestinal damage. Mechanistically, silencing Toll-like receptor 4 (TLR4) or receptor-interacting protein kinase 3 (RIPK3) via shRNA relieved mitophagy limitation, restored mitochondrial function and reduced NET-induced necroptosis in Caco-2 cells, whereas this protective effect was reversed by TLR4 or RIPK3 overexpression. The regulation of TLR4/RIPK3/FUNDC1-required mitophagy by NETs can potentially induce intestinal epithelium necroptosis.
To investigate the effects of long intergenic noncoding RNA-erythroid prosurvival (lincRNA-EPS) on periodontal inflammation mediated by inflammasomes and to explore its mechanism. Experimental periodontitis was induced in KO (lincRNA-EPS−/−) and WT (lincRNA-EPS+/+) mice to compare the periodontal bone loss and inflammation by using micro-computed tomography, immunofluorescence staining and haematoxylin and eosin staining. The expression and activation of cysteinyl aspartate-specific proteinase-11 (caspase-11) and NOD-like receptor protein 3 (NLRP3) inflammasomes, as well as nuclear factor-kappa B (NF-κB) activation in mouse gingival fibroblasts (MGFs), were measured by real-time quantitative polymerase chain reaction, Western blotting, enzyme-linked immunosorbent and lactate dehydrogenase assays. MGFs were transfected with overexpression plasmids to assess the biological functions of lincRNA-EPS. RNA pull-down and immunoprecipitation experiments were performed to identify the interacting protein of lincRNA-EPS. LincRNA-EPS-expressing lentivirus was locally administered to inflamed periodontal tissues to evaluate its salvage function in periodontitis. The absence of lincRNA-EPS increased bone loss and expression of myeloperoxidase, interleukin-1α (IL-1α) and IL-1β in the inflammatory periodontium. LincRNA-EPS KO MGFs exhibited increased expression and activation of caspase-11/NLRP3 inflammasome components than WT MGFs under lipopolysaccharide (LPS) stimulation. The expression and activation of these molecules were inhibited in lincRNA-EPS overexpressed MGFs. Mechanistically, lincRNA-EPS directly bound to transactive response DNA-binding protein 43 (TDP43) in the nucleus of MGFs, and TDP43 knockdown exerted a similar inhibitory effect on NF-κB activation and the inflammasomes as lincRNA-EPS overexpression. Locally injecting lincRNA-EPS-expressing lentivirus weakened the periodontal damage. LincRNA-EPS inhibits the LPS-induced production and activation of caspase-11 and NLRP3 inflammasomes by suppressing the activation of the NF-κB signalling pathway via interacting with TDP43, thereby alleviating periodontitis.