LincRNA-EPS inhibits caspase-11 and NLRP3 inflammasomes in gingival fibroblasts to alleviate periodontal inflammation

Anni Hu, Fan Xiao, Wenjing Wu, Huilin Xu, Jiansheng Su

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (1) : e13539. DOI: 10.1111/cpr.13539
ORIGINAL ARTICLE

LincRNA-EPS inhibits caspase-11 and NLRP3 inflammasomes in gingival fibroblasts to alleviate periodontal inflammation

Author information +
History +

Abstract

To investigate the effects of long intergenic noncoding RNA-erythroid prosurvival (lincRNA-EPS) on periodontal inflammation mediated by inflammasomes and to explore its mechanism. Experimental periodontitis was induced in KO (lincRNA-EPS−/−) and WT (lincRNA-EPS+/+) mice to compare the periodontal bone loss and inflammation by using micro-computed tomography, immunofluorescence staining and haematoxylin and eosin staining. The expression and activation of cysteinyl aspartate-specific proteinase-11 (caspase-11) and NOD-like receptor protein 3 (NLRP3) inflammasomes, as well as nuclear factor-kappa B (NF-κB) activation in mouse gingival fibroblasts (MGFs), were measured by real-time quantitative polymerase chain reaction, Western blotting, enzyme-linked immunosorbent and lactate dehydrogenase assays. MGFs were transfected with overexpression plasmids to assess the biological functions of lincRNA-EPS. RNA pull-down and immunoprecipitation experiments were performed to identify the interacting protein of lincRNA-EPS. LincRNA-EPS-expressing lentivirus was locally administered to inflamed periodontal tissues to evaluate its salvage function in periodontitis. The absence of lincRNA-EPS increased bone loss and expression of myeloperoxidase, interleukin-1α (IL-1α) and IL-1β in the inflammatory periodontium. LincRNA-EPS KO MGFs exhibited increased expression and activation of caspase-11/NLRP3 inflammasome components than WT MGFs under lipopolysaccharide (LPS) stimulation. The expression and activation of these molecules were inhibited in lincRNA-EPS overexpressed MGFs. Mechanistically, lincRNA-EPS directly bound to transactive response DNA-binding protein 43 (TDP43) in the nucleus of MGFs, and TDP43 knockdown exerted a similar inhibitory effect on NF-κB activation and the inflammasomes as lincRNA-EPS overexpression. Locally injecting lincRNA-EPS-expressing lentivirus weakened the periodontal damage. LincRNA-EPS inhibits the LPS-induced production and activation of caspase-11 and NLRP3 inflammasomes by suppressing the activation of the NF-κB signalling pathway via interacting with TDP43, thereby alleviating periodontitis.

Cite this article

Download citation ▾
Anni Hu, Fan Xiao, Wenjing Wu, Huilin Xu, Jiansheng Su. LincRNA-EPS inhibits caspase-11 and NLRP3 inflammasomes in gingival fibroblasts to alleviate periodontal inflammation. Cell Proliferation, 2024, 57(1): e13539 https://doi.org/10.1111/cpr.13539

References

[1]
Van Dyke TE, Sima C. Understanding resolution of inflammation in periodontal diseases: is chronic inflammatory periodontitis a failure to resolve? Periodontol 2000. 2020;82(1):205-213.
[2]
Silva LM, Doyle AD, Greenwell-Wild T, et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science. 2021;374(6575):eabl5450.
[3]
Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol. 2017;44(12):1215-1225.
[4]
Lv X, Fan C, Jiang Z, Wang W, Qiu X, Ji Q. Isoliquiritigenin alleviates P. gingivalis-LPS/ATP-induced pyroptosis by inhibiting NF-κB/ NLRP3/GSDMD signals in human gingival fibroblasts. Int Immunopharmacol. 2021;101:108338.
[5]
Genco RJ, Graziani F, Hasturk H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontol 2000. 2020;83(1):59-65.
[6]
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30-44.
[7]
Liu X, Chen Y, Chen X, Su J, Huang C. Enhanced efficacy of baicalin-loaded TPGS polymeric micelles against periodontitis. Mater Sci Eng C Mater Biol Appl. 2019;101:387-395.
[8]
Downs KP, Nguyen H, Dorfleutner A, Stehlik C. An overview of the non-canonical inflammasome. Mol Aspects Med. 2020;76:100924.
[9]
Marchesan JT, Girnary MS, Moss K, et al. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol 2000. 2020;82(1):93-114.
[10]
Yang C, Briones M, Chiou J, et al. Chlamydia trachomatis lipopolysaccharide evades the canonical and noncanonical inflammatory pathways to subvert innate immunity. mBio. 2019;10(2):e00595-19.
[11]
Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579(7799):415-420.
[12]
Aral K, Berdeli E, Cooper PR, et al. Differential expression of inflammasome regulatory transcripts in periodontal disease. J Periodontol. 2020;91(5):606-616.
[13]
Liu W, Liu J, Wang W, Wang Y, Ouyang X. NLRP6 induces pyroptosis by activation of caspase-1 in gingival fibroblasts. J Dent Res. 2018;97(12):1391-1398.
[14]
Park E, Na HS, Song Y-R, Shin SY, Kim Y-M, Chung J. Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection. Infect Immun. 2014;82(1):112-123.
[15]
Chen Q, Liu X, Wang D, et al. Periodontal inflammation-triggered by periodontal ligament stem cell pyroptosis exacerbates periodontitis. Front Cell Dev Biol. 2021;9:663037.
[16]
Xu J, Yin Y, Lin Y, et al. Long non-coding RNAs: emerging roles in periodontitis. J Periodontal Res. 2021;56(5):848-862.
[17]
Zhou M, Hu H, Han Y, et al. Long non-coding RNA 01126 promotes periodontitis pathogenesis of human periodontal ligament cells via miR-518a-5p/HIF-1α/MAPK pathway. Cell Prolif. 2021;54(1):e12957.
[18]
Han Y, Huang Y, Yang Q, Jia L, Zheng Y, Li W. Long non-coding RNA SNHG5 mediates periodontal inflammation through the NF-κB signalling pathway. J Clin Periodontol. 2022;49(10):1038-1051.
[19]
Li J, Jin F, Cai M, Lin T, Wang X, Sun Y. LncRNA Nron inhibits bone resorption in periodontitis. J Dent Res. 2022;101(2):187-195.
[20]
Atianand MK, Hu W, Satpathy AT, et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell. 2016;165(7):1672-1685.
[21]
Chen S, Zhu J, Sun L-Q, et al. LincRNA-EPS alleviates severe acute pancreatitis by suppressing HMGB1-triggered inflammation in pancreatic macrophages. Immunology. 2021;163(2):201-219.
[22]
Guo H, Guo X, Jiang S. Long non-coding RNA lincRNA-erythroid prosurvival (EPS) alleviates cerebral ischemia/reperfusion injury by maintaining high-temperature requirement protein A1 (Htra1) stability through recruiting heterogeneous nuclear ribonucleoprotein L (HNRNPL). Bioengineered. 2022;13(5):12248-12260.
[23]
Liu W, Wang Z, Liu L, et al. LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity. Proc Natl Acad Sci U S A. 2020;117(38):23695-23706.
[24]
Li J, Zhao W, Li Q, Huang Z, Shi G, Li C. Long non-coding RNA H19 promotes porcine satellite cell differentiation by interacting with TDP43. Genes. 2020;11(3):259.
[25]
Deora V, Lee JD, Albornoz EA, et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia. 2020;68(2):407-421.
[26]
Parkunan SM, Randall CB, Astley RA, Furtado GC, Lira SA, Callegan MC. CXCL1, but not IL-6, significantly impacts intraocular inflammation during infection. J Leukoc Biol. 2016;100(5):1125-1134.
[27]
Giraud A, Zeboudj L, Vandestienne M, et al. Gingival fibroblasts protect against experimental abdominal aortic aneurysm development and rupture through tissue inhibitor of metalloproteinase-1 production. Cardiovasc Res. 2017;113(11):1364-1375.
[28]
Cheng R, Choudhury D, Liu C, Billet S, Hu T, Bhowmick NA. Gingival fibroblasts resist apoptosis in response to oxidative stress in a model of periodontal diseases. Cell Death Discov. 2015;1:15046.
[29]
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128.
[30]
Zhang P, Cao L, Zhou R, Yang X, Wu M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun. 2019;10(1):1495.
[31]
Li T, Sun H, Li Y, et al. Downregulation of macrophage migration inhibitory factor attenuates NLRP3 inflammasome mediated pyroptosis in sepsis-induced AKI. Cell Death Discov. 2022;8(1):61.
[32]
Swarup V, Phaneuf D, Dupré N, et al. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J Exp Med. 2011;208(12):2429-2447.
[33]
Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.
[34]
Rathinam VAK, Vanaja SK, Waggoner L, et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. 2012;150(3):606-619.
[35]
Kopitar-Jerala N. Innate immune response in brain, NF-kappa B signaling and cystatins. Front Mol Neurosci. 2015;8:73.
[36]
Wiggins KA, Parry AJ, Cassidy LD, et al. IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype. Aging Cell. 2019;18(3):e12946.
[37]
Yin F, Zheng P-Q, Zhao L-Q, et al. Caspase-11 promotes NLRP3 inflammasome activation via the cleavage of pannexin1 in acute kidney disease. Acta Pharmacol Sin. 2022;43(1):86-95.
[38]
Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F. The P2X7 receptor: a main player in inflammation. Biochem Pharmacol. 2018;151:234-244.
[39]
Li Z, Huang Z, Zhang H, et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk. Oxid Med Cell Longev. 2021;2021:8868361.
[40]
Liu Y, Xiao Y, Li Z. P2X7 receptor positively regulates MyD88-dependent NF-κB activation. Cytokine. 2011;55(2):229-236.
[41]
Tang H, Yuan S, Chen T, Ji P. Development of an immune-related lncRNA-miRNA-mRNA network based on competing endogenous RNA in periodontitis. J Clin Periodontol. 2021;48(11):1470-1479.
[42]
Li J, Wang M, Song L, Wang X, Lai W, Jiang S. LncRNA MALAT1 regulates inflammatory cytokine production in lipopolysaccharide-stimulated human gingival fibroblasts through sponging miR-20a and activating TLR4 pathway. J Periodontal Res. 2020;55(2):182-190.
[43]
Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341(6147):789-792.
[44]
Xing Y-J, Zhang T, Wan S-J, et al. LncRNA HEM2ATM improves obesity-associated adipose tissues meta-inflammation and insulin resistance by interacting with heterogeneous nuclear ribonucleoprotein U. Clin Immunol. 2023;247:109234.
[45]
Xue Z, Zhang Z, Liu H, et al. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Differ. 2019;26(1):130-145.
[46]
Tong Q, Gong A-Y, Zhang X-T, et al. LincRNA-Cox2 modulates TNF-α-induced transcription of Il12b gene in intestinal epithelial cells through regulation of Mi-2/NuRD-mediated epigenetic histone modifications. FASEB J. 2016;30(3):1187-1197.
[47]
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12:25.
[48]
Zhao W, Beers DR, Bell S, et al. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp Neurol. 2015;273:24-35.
[49]
Ohta Y, Tremblay C, Schneider JA, Bennett DA, Calon F, Julien J-P. Interaction of transactive response DNA binding protein 43 with nuclear factor κB in mild cognitive impairment with episodic memory deficits. Acta Neuropathol Commun. 2014;2:37.
[50]
Lee S, Kim S, Kang H-Y, et al. The overexpression of TDP-43 in astrocytes causes neurodegeneration via a PTP1B-mediated inflammatory response. J Neuroinflammation. 2020;17(1):299.
[51]
Williams DW, Greenwell-Wild T, Brenchley L, et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell. 2021;184(15):4090-4104.e15.
[52]
Kondo T, Okawa H, Hokugo A, et al. Oral microbial extracellular DNA initiates periodontitis through gingival degradation by fibroblast-derived cathepsin K in mice. Commun Biol. 2022;5(1):962.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/