Potential roles of enteric glial cells in Crohn's disease: A critical review

Xinyi Mao, Jun Shen

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (1) : e13536. DOI: 10.1111/cpr.13536
REVIEW

Potential roles of enteric glial cells in Crohn's disease: A critical review

Author information +
History +

Abstract

Enteric glial cells in the enteric nervous system are critical for the regulation of gastrointestinal homeostasis. Increasing evidence suggests two-way communication between enteric glial cells and both enteric neurons and immune cells. These interactions may be important in the pathogenesis of Crohn's disease (CD), a chronic relapsing disease characterized by a dysregulated immune response. Structural abnormalities in glial cells have been identified in CD. Furthermore, classical inflammatory pathways associated with CD (e.g., the nuclear factor kappa-B pathway) function in enteric glial cells. However, the specific mechanisms by which enteric glial cells contribute to CD have not been summarized in detail. In this review, we describe the possible roles of enteric glial cells in the pathogenesis of CD, including the roles of glia–immune interactions, neuronal modulation, neural plasticity, and barrier integrity. Additionally, the implications for the development of therapeutic strategies for CD based on enteric glial cell-mediated pathogenic processes are discussed.

Cite this article

Download citation ▾
Xinyi Mao, Jun Shen. Potential roles of enteric glial cells in Crohn's disease: A critical review. Cell Proliferation, 2024, 57(1): e13536 https://doi.org/10.1111/cpr.13536

References

[1]
Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn's disease. Lancet. 2017;389(10080):1741-1755.
CrossRef Google scholar
[2]
Kikut J, Drozd A, Mokrzycka M, Grzybowska-Chlebowczyk U, Ziętek M, Szczuko M. Are EPA and DHA derivatives involved in IBD remission? J Clin Med. 2022;11(9):2388.
CrossRef Google scholar
[3]
Schwanke RC, Marcon R, Bento AF, Calixto JB. EPA- and DHA-derived resolvins' actions in inflammatory bowel disease. Eur J Pharmacol. 2016;785:156-164.
CrossRef Google scholar
[4]
Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92-101.
CrossRef Google scholar
[5]
Jessen KR, Mirsky R. Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci. 1983;3(11):2206-2218.
CrossRef Google scholar
[6]
Rühl A. Glial cells in the gut. Neurogastroenterol Motil. 2005;17(6):777-790.
CrossRef Google scholar
[7]
Bush TG, Savidge TC, Freeman TC, et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell. 1998;93(2):189-201.
CrossRef Google scholar
[8]
Cabarrocas J, Savidge TC, Liblau RS. Role of enteric glial cells in inflammatory bowel disease. Glia. 2003;41(1):81-93.
CrossRef Google scholar
[9]
Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. 2018;98(1):239-389.
CrossRef Google scholar
[10]
Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18(8):571-587.
CrossRef Google scholar
[11]
Abdo H, Derkinderen P, Gomes P, et al. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J. 2010;24(4):1082-1094.
CrossRef Google scholar
[12]
Gabella G. Fine structure of the myenteric plexus in the Guinea-pig ileum. J Anat. 1972;111(Pt 1):69-97.
[13]
Vergnolle N, Cirillo C. Neurons and glia in the enteric nervous system and epithelial barrier function. Physiology (Bethesda). 2018;33(4):269-280.
CrossRef Google scholar
[14]
McClain JL, Fried DE, Gulbransen BD. Agonist-evoked Ca(2+) signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol Gastroenterol Hepatol. 2015;1(6):631-645.
CrossRef Google scholar
[15]
Fung C, Boesmans W, Cirillo C, Foong JPP, Bornstein JC, vanden Berghe P. VPAC receptor subtypes tune purinergic neuron-to-glia communication in the murine submucosal plexus. Front Cell Neurosci. 2017;11:118.
CrossRef Google scholar
[16]
Gulbransen BD, Bashashati M, Hirota SA, et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med. 2012;18(4):600-604.
CrossRef Google scholar
[17]
Geboes K, Collins S. Structural abnormalities of the nervous system in Crohn's disease and ulcerative colitis. Neurogastroenterol Motil. 1998;10(3):189-202.
CrossRef Google scholar
[18]
Cornet A, Savidge TC, Cabarrocas J, et al. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease? Proc Natl Acad Sci U S A. 2001;98(23):13306-13311.
CrossRef Google scholar
[19]
Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med. 2008;263(6):591-596.
CrossRef Google scholar
[20]
O'Connor PM, Lapointe TK, Beck PL, et al. Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease. Inflamm Bowel Dis. 2010;16(8):1411-1420.
CrossRef Google scholar
[21]
Han YM, Koh J, Kim JW, et al. NF-kappa B activation correlates with disease phenotype in Crohn's disease. PloS One. 2017;12(7):e0182071.
CrossRef Google scholar
[22]
Ibiza S, García-Cassani B, Ribeiro H, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535(7612):440-443.
CrossRef Google scholar
[23]
Grubišić V, McClain JL, Fried DE, et al. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep. 2020;32(10):108100.
CrossRef Google scholar
[24]
Progatzky F, Shapiro M, Chng SH, et al. Regulation of intestinal immunity and tissue repair by enteric glia. Nature. 2021;599(7883):125-130.
CrossRef Google scholar
[25]
Palmela C, Chevarin C, Xu Z, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut. 2018;67(3):574-587.
CrossRef Google scholar
[26]
Liu Y, van Kruiningen HJ, West AB, Cartun RW, Cortot A, Colombel JF. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn's disease. Gastroenterology. 1995;108(5):1396-1404.
CrossRef Google scholar
[27]
Elliott TR, Hudspith BN, Wu G, et al. Quantification and characterization of mucosa-associated and intracellular Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(11):2326-2338.
CrossRef Google scholar
[28]
Turco F, Sarnelli G, Cirillo C, et al. Enteroglial-derived S100B protein integrates bacteria-induced toll-like receptor signalling in human enteric glial cells. Gut. 2014;63(1):105-115.
CrossRef Google scholar
[29]
Esposito G, Capoccia E, Turco F, et al. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation. Gut. 2014;63(8):1300-1312.
CrossRef Google scholar
[30]
Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108(7):949-955.
CrossRef Google scholar
[31]
MacEachern SJ, Patel BA, Keenan CM, et al. Inhibiting inducible nitric oxide synthase in enteric glia restores electrogenic ion transport in mice with colitis. Gastroenterology. 2015;149(2):445-55.e3.
CrossRef Google scholar
[32]
Hibbs JB, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988;157(1):87-94.
CrossRef Google scholar
[33]
Jones RJ, Jourd'heuil D, Salerno JC, Smith SME, Singer HA. iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2007;292(6):H2634-H2642.
CrossRef Google scholar
[34]
Brown IA, McClain JL, Watson RE, et al. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2(1):77-91.
CrossRef Google scholar
[35]
Grubišić V, Gulbransen BD. Enteric glia: the most alimentary of all glia. J Physiol. 2017;595(2):557-570.
CrossRef Google scholar
[36]
Elia PP, Tolentino YF, Bernardazzi C, de Souza HS. The role of innate immunity receptors in the pathogenesis of inflammatory bowel disease. Mediators Inflamm. 2015;2015:936193.
CrossRef Google scholar
[37]
Walev I, Reske K, Palmer M, Valeva A, Bhakdi S. Potassium-inhibited processing of IL-1 beta in human monocytes. EMBO J. 1995;14(8):1607-1614.
CrossRef Google scholar
[38]
Ferrari D, Pizzirani C, Adinolfi E, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176(7):3877-3883.
CrossRef Google scholar
[39]
Adinolfi E, Giuliani AL, de Marchi E, et al. The P2X7 receptor: a main player in inflammation. Biochem Pharmacol. 2018;151:234-244.
CrossRef Google scholar
[40]
Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 2006;25(21):5071-5082.
CrossRef Google scholar
[41]
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417-426.
CrossRef Google scholar
[42]
Flamant M, Aubert P, Rolli-Derkinderen M, et al. Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosoglutathione. Gut. 2011;60(4):473-484.
CrossRef Google scholar
[43]
Chow AK, Gulbransen BD. Potential roles of enteric glia in bridging neuroimmune communication in the gut. Am J Physiol Gastrointest Liver Physiol. 2017;312(2):G145-g52.
CrossRef Google scholar
[44]
Boschetti G, Nancey S, Sardi F, Roblin X, Flourié B, Kaiserlian D. Therapy with anti-TNFα antibody enhances number and function of Foxp3(+) regulatory T cells in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):160-170.
CrossRef Google scholar
[45]
Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14(3):221-229.
CrossRef Google scholar
[46]
Zhou L, Chu C, Teng F, et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019;568(7752):405-409.
CrossRef Google scholar
[47]
Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517(7534):293-301.
CrossRef Google scholar
[48]
Tang Y, Tan SA, Iqbal A, Li J, Glover SC. STAT3 genotypic variant rs744166 and increased tyrosine phosphorylation of STAT3 in IL-23 responsive innate lymphoid cells during pathogenesis of Crohn's disease. J Immunol Res. 2019;2019:9406146.
CrossRef Google scholar
[49]
Monteleone G, Trapasso F, Parrello T, et al. Bioactive IL-18 expression is up-regulated in Crohn's disease. J Immunol. 1999;163(1):143-147.
[50]
Muñoz M, Eidenschenk C, Ota N, et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity. 2015;42(2):321-331.
CrossRef Google scholar
[51]
Lucarini E, Seguella L, Vincenzi M, et al. Role of enteric glia as bridging element between gut inflammation and visceral pain consolidation during acute colitis in rats. Biomedicine. 2021;9(11):1671.
CrossRef Google scholar
[52]
Baillie JK, Arner E, Daub C, et al. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS Genet. 2017;13(3):e1006641.
CrossRef Google scholar
[53]
Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343(6178):1249288.
CrossRef Google scholar
[54]
Britton GJ, Contijoch EJ, Mogno I, et al. Microbiotas from humans with inflammatory bowel disease Alter the balance of gut Th17 and RORγt(+) regulatory T cells and exacerbate colitis in mice. Immunity. 2019;50(1):212-24.e4.
CrossRef Google scholar
[55]
Geboes K, Rutgeerts P, Ectors N, et al. Major histocompatibility class II expression on the small intestinal nervous system in Crohn's disease. Gastroenterology. 1992;103(2):439-447.
CrossRef Google scholar
[56]
Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65-70.
CrossRef Google scholar
[57]
Niessner M, Volk BA. Altered Th1/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR). Clin Exp Immunol. 1995;101(3):428-435.
CrossRef Google scholar
[58]
Chang JT. Pathophysiology of inflammatory bowel diseases. N Engl J Med. 2020;383(27):2652-2664.
CrossRef Google scholar
[59]
Chow AK, Grubišić V, Gulbransen BD. Enteric glia regulate lymphocyte activation via autophagy-mediated MHC-II expression. Cell Mol Gastroenterol Hepatol. 2021;12(4):1215-1237.
CrossRef Google scholar
[60]
Coccia EM, Remoli ME, Di Giacinto C, et al. Cholera toxin subunit B inhibits IL-12 and IFN-{gamma} production and signaling in experimental colitis and Crohn's disease. Gut. 2005;54(11):1558-1564.
CrossRef Google scholar
[61]
Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):298-306.
CrossRef Google scholar
[62]
Ochoa-Cortes F, Turco F, Linan-Rico A, et al. Enteric glial cells: a new frontier in neurogastroenterology and clinical target for inflammatory bowel diseases. Inflamm Bowel Dis. 2016;22(2):433-449.
CrossRef Google scholar
[63]
Bassotti G, Villanacci V, Antonelli E, Morelli A, Salerni B. Enteric glial cells: new players in gastrointestinal motility? Lab Invest. 2007;87(7):628-632.
CrossRef Google scholar
[64]
Di Virgilio F, Dal Ben D, Sarti AC, et al. The P2X7 receptor in infection and inflammation. Immunity. 2017;47(1):15-31.
CrossRef Google scholar
[65]
de Gassart A, Martinon F. Pyroptosis: Caspase-11 unlocks the gates of death. Immunity. 2015;43(5):835-837.
CrossRef Google scholar
[66]
McClain J, Grubišić V, Fried D, et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology. 2014;146(2):497-507.e1.
CrossRef Google scholar
[67]
Delvalle NM, Fried DE, Rivera-Lopez G, Gaudette L, Gulbransen BD. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol. 2018;315(4):G473-g83.
CrossRef Google scholar
[68]
Green CL, Ho W, Sharkey KA, McKay DM. Dextran sodium sulfate-induced colitis reveals nicotinic modulation of ion transport via iNOS-derived NO. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):G706-G714.
CrossRef Google scholar
[69]
Zhang N, Weber A, Li B, et al. An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. J Immunol. 2003;170(12):6307-6319.
CrossRef Google scholar
[70]
Auteri M, Zizzo MG, Serio R. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol Res. 2015;93:11-21.
CrossRef Google scholar
[71]
Fletcher EL, Clark MJ, Furness JB. Neuronal and glial localization of GABA transporter immunoreactivity in the myenteric plexus. Cell Tissue Res. 2002;308(3):339-346.
CrossRef Google scholar
[72]
Fried DE, Watson RE, Robson SC, Gulbransen BD. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling. Am J Physiol Gastrointest Liver Physiol. 2017;313(6):G570-G580.
CrossRef Google scholar
[73]
von Boyen GB, Schulte N, Pflüger C, et al. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol. 2011;11:3.
CrossRef Google scholar
[74]
Sokol H, Polin V, Lavergne-Slove A, et al. Plexitis as a predictive factor of early postoperative clinical recurrence in Crohn's disease. Gut. 2009;58(9):1218-1225.
CrossRef Google scholar
[75]
Delvalle NM, Dharshika C, Morales-Soto W, Fried DE, Gaudette L, Gulbransen BD. Communication between enteric neurons, glia, and nociceptors underlies the effects of tachykinins on neuroinflammation. Cell Mol Gastroenterol Hepatol. 2018;6(3):321-344.
CrossRef Google scholar
[76]
Hirano T, Hirayama D, Wagatsuma K, Yamakawa T, Yokoyama Y, Nakase H. Immunological mechanisms in inflammation-associated colon carcinogenesis. Int J Mol Sci. 2020;21(9):3062.
CrossRef Google scholar
[77]
Prado GN, Taylor L, Zhou X, Ricupero D, Mierke DF, Polgar P. Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J Cell Physiol. 2002;193(3):275-286.
CrossRef Google scholar
[78]
Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96:70-82.
CrossRef Google scholar
[79]
Murakami M, Ohta T, Ito S. Interleukin-1beta enhances the action of bradykinin in rat myenteric neurons through up-regulation of glial B1 receptor expression. Neuroscience. 2008;151(1):222-231.
CrossRef Google scholar
[80]
Murakami M, Ohta T, Otsuguro K, et al. Involvement of prostaglandin E(2) derived from enteric glial cells in the action of bradykinin in cultured rat myenteric neurons. Neuroscience. 2007;145(2):642-653.
CrossRef Google scholar
[81]
Gilks WP, Abou-Sleiman PM, Gandhi S, et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet. 2005;365(9457):415-416.
CrossRef Google scholar
[82]
Hui KY, Fernandez-Hernandez H, Hu J, et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med. 2018;10(423):eaai7795.
CrossRef Google scholar
[83]
Gardet A, Benita Y, Li C, et al. LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol. 2010;185(9):5577-5585.
CrossRef Google scholar
[84]
de Guilhem De Lataillade A, Caillaud M, Oullier T, et al. LRRK2 expression in normal and pathologic human gut and in rodent enteric neural cell lines. J Neurochem. 2022;164:193-209.
CrossRef Google scholar
[85]
Munoz L, Kavanagh ME, Phoa AF, et al. Optimisation of LRRK2 inhibitors and assessment of functional efficacy in cell-based models of neuroinflammation. Eur J Med Chem. 2015;95:29-34.
CrossRef Google scholar
[86]
Streubel-Gallasch L, Giusti V, Sandre M, et al. Parkinson's disease-associated LRRK2 interferes with astrocyte-mediated alpha-synuclein clearance. Mol Neurobiol. 2021;58(7):3119-3140.
CrossRef Google scholar
[87]
Dugan LL, Kim JS, Zhang Y, et al. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem. 1999;274(36):25842-25848.
CrossRef Google scholar
[88]
Savidge TC, Newman P, Pothoulakis C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132(4):1344-1358.
CrossRef Google scholar
[89]
Yu YB, Li YQ. Enteric glial cells and their role in the intestinal epithelial barrier. World J Gastroenterol. 2014;20(32):11273-11280.
CrossRef Google scholar
[90]
Bauman BD, Meng J, Zhang L, et al. Enteric glial-mediated enhancement of intestinal barrier integrity is compromised by morphine. J Surg Res. 2017;219:214-221.
CrossRef Google scholar
[91]
Pochard C, Coquenlorge S, Jaulin J, et al. Defects in 15-HETE production and control of epithelial permeability by human enteric glial cells from patients with Crohn's disease. Gastroenterology. 2016;150(1):168-180.
CrossRef Google scholar
[92]
Meir M, Flemming S, Burkard N, et al. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol. 2015;309(8):G613-G624.
CrossRef Google scholar
[93]
Xiao W, Wang W, Chen W, et al. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation. Mol Neurobiol. 2014;50(2):274-289.
CrossRef Google scholar
[94]
Zhang DK, He FQ, Li TK, et al. Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J Pathol. 2010;222(2):213-222.
CrossRef Google scholar
[95]
von Boyen GB, Steinkamp M, Geerling I, et al. Proinflammatory cytokines induce neurotrophic factor expression in enteric glia: a key to the regulation of epithelial apoptosis in Crohn's disease. Inflamm Bowel Dis. 2006;12(5):346-354.
CrossRef Google scholar
[96]
Steinkamp M, Geerling I, Seufferlein T, et al. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology. 2003;124(7):1748-1757.
CrossRef Google scholar
[97]
Chen H, Han T, Gao L, Zhang DK. The involvement of glial cell-derived neurotrophic factor in inflammatory bowel disease. J Interferon Cytokine Res. 2022;42(1):1-7.
CrossRef Google scholar
[98]
Meir M, Kannapin F, Diefenbacher M, et al. Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent. Int J Mol Sci. 2021;22(4):1887.
CrossRef Google scholar
[99]
Patel A, Harker N, Moreira-Santos L, et al. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci Signal. 2012;5(235):ra55.
CrossRef Google scholar
[100]
Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12(5):383-390.
CrossRef Google scholar
[101]
Meir M, Burkard N, Ungewiß H, et al. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest. 2019;129(7):2824-2840.
CrossRef Google scholar
[102]
Brun P, Gobbo S, Caputi V, et al. Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells. Mol Cell Neurosci. 2015;68:24-35.
CrossRef Google scholar
[103]
Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF. GDNF is a chemoattractant for enteric neural cells. Dev Biol. 2001;229(2):503-516.
CrossRef Google scholar
[104]
Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM. GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res. 2020;382(1):47-56.
CrossRef Google scholar
[105]
Li Z, Zhang X, Zhou H, Liu W, Li J. Exogenous S-nitrosoglutathione attenuates inflammatory response and intestinal epithelial barrier injury in endotoxemic rats. J Trauma Acute Care Surg. 2016;80(6):977-984.
CrossRef Google scholar
[106]
Fanning AS, Ma TY, Anderson JM. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J. 2002;16(13):1835-1837.
CrossRef Google scholar
[107]
Grubišić V, Gulbransen BD. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J Physiol. 2017;595(11):3409-3424.
CrossRef Google scholar
[108]
Kabouridis PS, Lasrado R, McCallum S, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85(2):289-295.
CrossRef Google scholar
[109]
Neves AR, Castelo-Branco MT, Figliuolo VR, et al. Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn's disease. Inflamm Bowel Dis. 2014;20(3):444-457.
CrossRef Google scholar
[110]
Eser A, Colombel JF, Rutgeerts P, et al. Safety and efficacy of an oral inhibitor of the purinergic receptor P2X7 in adult patients with moderately to severely active Crohn's disease: a randomized placebo-controlled, double-blind, Phase IIa Study. Inflamm Bowel Dis. 2015;21(10):2247-2253.
CrossRef Google scholar
[111]
Ali Z, Laurijssens B, Ostenfeld T, et al. Pharmacokinetic and pharmacodynamic profiling of a P2X7 receptor allosteric modulator GSK1482160 in healthy human subjects. Br J Clin Pharmacol. 2013;75(1):197-207.
CrossRef Google scholar
[112]
Hofman P, Cherfils-Vicini J, Bazin M, et al. Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Res. 2015;75(5):835-845.
CrossRef Google scholar
[113]
Burnstock G, Jacobson KA, Christofi FL. Purinergic drug targets for gastrointestinal disorders. Curr Opin Pharmacol. 2017;37:131-141.
CrossRef Google scholar
[114]
Lara R, Adinolfi E, Harwood CA, et al. P2X7 in cancer: from molecular mechanisms to therapeutics. Front Pharmacol. 2020;11:793.
CrossRef Google scholar
[115]
Diezmos EF, Markus I, Perera DS, et al. Blockade of Pannexin-1 channels and purinergic P2X7 receptors shows protective effects against cytokines-induced colitis of human colonic mucosa. Front Pharmacol. 2018;9:865.
CrossRef Google scholar
[116]
Good ME, Chiu YH, Poon IKH, et al. Pannexin 1 channels as an unexpected new target of the anti-hypertensive drug spironolactone. Circ Res. 2018;122(4):606-615.
CrossRef Google scholar
[117]
Zhang J, Wang XJ, Wu LJ, et al. Herb-partitioned moxibustion alleviates colonic inflammation in Crohn's disease rats by inhibiting hyperactivation of the NLRP3 inflammasome via regulation of the P2X7R-Pannexin-1 signaling pathway. PLoS One. 2021;16(5):e0252334.
CrossRef Google scholar
[118]
Di Cesare ML, Marcoli M, Micheli L, et al. Oxaliplatin evokes P2X7-dependent glutamate release in the cerebral cortex: a pain mechanism mediated by pannexin 1. Neuropharmacology. 2015;97:133-141.
CrossRef Google scholar
[119]
Bravo D, Maturana CJ, Pelissier T, Hernández A, Constandil L. Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: possible role on chronic pain. Pharmacol Res. 2015;101:86-93.
CrossRef Google scholar
[120]
Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF. Norman cousins lecture. Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun. 2007;21(2):131-146.
CrossRef Google scholar
[121]
Liu SL, Li YH, Shi GY, et al. A novel inhibitory effect of naloxone on macrophage activation and atherosclerosis formation in mice. J Am Coll Cardiol. 2006;48(9):1871-1879.
CrossRef Google scholar
[122]
Younger J, Parkitny L, McLain D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clin Rheumatol. 2014;33(4):451-459.
CrossRef Google scholar
[123]
Smith JP, Bingaman SI, Ruggiero F, et al. Therapy with the opioid antagonist naltrexone promotes mucosal healing in active Crohn's disease: a randomized placebo-controlled trial. Dig Dis Sci. 2011;56(7):2088-2097.
CrossRef Google scholar
[124]
Smith JP, Stock H, Bingaman S, Mauger D, Rogosnitzky M, Zagon IS. Low-dose naltrexone therapy improves active Crohn's disease. Am J Gastroenterol. 2007;102(4):820-828.
CrossRef Google scholar
[125]
Huang YF, Li QP, Dou YX, et al. Therapeutic effect of Brucea javanica oil emulsion on experimental Crohn's disease in rats: involvement of TLR4/ NF-κB signaling pathway. Biomed Pharmacother. 2019;114:108766.
CrossRef Google scholar
[126]
Costa DVS, Bon-Frauches AC, Silva A, et al. 5-fluorouracil induces enteric neuron death and glial activation during intestinal mucositis via a S100B-RAGE-NFκB-dependent pathway. Sci Rep. 2019;9(1):665.
CrossRef Google scholar
[127]
Morales-Soto W, Gulbransen BD. Enteric glia: a new player in abdominal pain. Cell Mol Gastroenterol Hepatol. 2019;7(2):433-445.
CrossRef Google scholar
[128]
Fox AD, Kripke SA, De Paula J, et al. Effect of a glutamine-supplemented enteral diet on methotrexate-induced enterocolitis. JPEN J Parenter Enteral Nutr. 1988;12(4):325-331.
CrossRef Google scholar
[129]
Coëffier M, Marion R, Ducrotté P, Déchelotte P. Modulating effect of glutamine on IL-1beta-induced cytokine production by human gut. Clin Nutr. 2003;22(4):407-413.
CrossRef Google scholar
[130]
Akobeng AK, Elawad M, Gordon M. Glutamine for induction of remission in Crohn's disease. Cochrane Database Syst Rev. 2016;2:Cd007348.
CrossRef Google scholar
[131]
Severo JS, da Silva Barros VJ, Alves da Silva AC, et al. Effects of glutamine supplementation on inflammatory bowel disease: a systematic review of clinical trials. Clin Nutr ESPEN. 2021;42:53-60.
CrossRef Google scholar
[132]
Szatkowski P, Krzysciak W, Mach T, Owczarek D, Brzozowski B, Szczeklik K. Nuclear factor-κB: importance, induction of inflammation, and effects of pharmacological modulators in Crohn's disease. J Physiol Pharmacol. 2020;71(4).
CrossRef Google scholar
[133]
Cheng WX, Ren Y, Lu MM, et al. Palmitoylation in Crohn's disease: current status and future directions. World J Gastroenterol. 2021;27(48):8201-8215.
CrossRef Google scholar
[134]
Hanauer SB, Sandborn WJ, Rutgeerts P, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn's disease: the CLASSIC-I trial. Gastroenterology. 2006;130(2):323-333.
CrossRef Google scholar
[135]
Jilani NZ, Akobeng AK. Adalimumab for maintenance of clinical response and remission in patients with Crohn's disease: the CHARM trial. Colombel JF, Sandborn WJ, Rutgeerts P et al. Gastroenterology 2007;132:52-65. J Pediatr Gastroenterol Nutr. 2008;46(2):226-227.
CrossRef Google scholar
[136]
Sandborn WJ, Feagan BG, Stoinov S, et al. Certolizumab pegol for the treatment of Crohn's disease. N Engl J Med. 2007;357(3):228-238.
CrossRef Google scholar
[137]
Cushing K, Higgins PDR. Management of Crohn disease: a review. Jama. 2021;325(1):69-80.
CrossRef Google scholar
[138]
Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as induction and maintenance therapy for Crohn's disease. N Engl J Med. 2016;375(20):1946-1960.
CrossRef Google scholar
[139]
Fang L, Pang Z, Shu W, et al. Anti-TNF therapy induces CD4+ T-cell production of IL-22 and promotes epithelial repairs in patients with Crohn's disease. Inflamm Bowel Dis. 2018;24(8):1733-1744.
CrossRef Google scholar
[140]
Valès S, Bacola G, Biraud M, et al. Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. EBioMedicine. 2019;49:172-188.
CrossRef Google scholar
[141]
Selgrad M, De Giorgio R, Fini L, et al. JC virus infects the enteric glia of patients with chronic idiopathic intestinal pseudo-obstruction. Gut. 2009;58(1):25-32.
CrossRef Google scholar
[142]
Seelig DM, Mason GL, Telling GC, Hoover EA. Chronic wasting disease prion trafficking via the autonomic nervous system. Am J Pathol. 2011;179(3):1319-1328.
CrossRef Google scholar
[143]
Liu C, Yang J. Enteric glial cells in immunological disorders of the gut. Front Cell Neurosci. 2022;16:895871.
CrossRef Google scholar
[144]
Zoumboulakis D, Cirella KR, Gougeon PY, Lourenssen SR, Blennerhassett MG. MMP-9 processing of intestinal smooth muscle-derived GDNF is required for neurotrophic action on enteric neurons. Neuroscience. 2020;443:8-18.
CrossRef Google scholar
[145]
Brun P, Giron MC, Qesari M, et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology. 2013;145(6):1323-1333.
CrossRef Google scholar
[146]
Matteoli G. Enteric glial cells: new players in mucosal defence against bacteria? Gut. 2011;60(4):429-430.
CrossRef Google scholar
[147]
Kinchen J, Chen HH, Parikh K, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 2018;175(2):372-86.e17.
CrossRef Google scholar
[148]
Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell. 2019;178(3):714-30.e22.
CrossRef Google scholar
[149]
Liñán-Rico A, Turco F, Ochoa-Cortes F, et al. Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype: implications for GI infection, IBD, POI, neurological, motility, and GI disorders. Inflamm Bowel Dis. 2016;22(8):1812-1834.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/