2022-06-01 2022, Volume 5 Issue 2

  • Select all
  • review-article
    Jing Wu, Meng-Xuan Zhu, Ke-Sang Li, Ling Peng, Peng-Fei Zhang

    Aim: Circular RNAs are widely and abnormally expressed in human cancer cells, and they participate in cancer progression. However, they have rarely been investigated in the immune evasion of non-small cell lung cancer (NSCLC). Here, we elucidated the function and molecular mechanism of hsa_circ_0020714 in promoting the resistance to anti-PD-1 immunotherapy of NSCLC.

    Methods: The expression of hsa_circ_0020714 were examined by qRT-PCR. In vivo experiments were executed to investigate the biological function of hsa_circ_0020714 in the sensitivity of NSCLC to anti-PD-1 immunotherapy. The qRT-PCR, fluorescence in situ hybridization, RNA pulldown, RNA immunoprecipitation, and western blot were carried out to investigate the potential regulatory mechanisms of hsa_circ_0020714 in NSCLC immune evasion.

    Results: The expression of hsa_circ_0020714 was upregulated in NSCLC tissues compared to the paired adjacent non-tumor tissues, and an increased expression of hsa_circ_0020714 was significantly associated with a bad prognosis and resistance to anti-PD-1 immunotherapy in patients with NSCLC. Mechanistically, hsa_circ_0020714 functions as an endogenous miR-30a-5p sponge to enhance SOX4 expression, thereby promoting immune evasion and anti-PD-1 resistance in NSCLC patients.

    Conclusion: Hsa_circ_0020714 induces the immune evasion and resistance to anti-PD-1 immunotherapy of NSCLC via the miR-30a-5p/SOX4 axis, and may be an promising immunotherapeutic target in NSCLC.

  • review-article
    Fatih M. Uckun
  • review-article
    Tomas Koltai

    Multiple drug resistance (MDR) is the tumor’s way of escaping the cytotoxic effects of various unrelated chemotherapeutic drugs. It can be either innate or acquired. MDR represents the end of the therapeutic pathway, and it practically leaves no treatment alternatives. Reversing MDR is an unfulfilled goal, despite the important recent advances in cancer research. MDR, the main cause of death in cancer patients, is a multi-factorial development, and most of its known causes have been thoroughly discussed in the literature. However, there is one aspect that has not received adequate consideration - intracellular alkalosis - which is part of wider pH deregulation where the pH gradient is inverted, meaning that extracellular pH is decreased and intracellular pH increased. This situation interacts with MDR and with the proteins involved, such as P-gp, breast cancer resistance protein, and multidrug associated resistance protein 1. However, there are also situations in which these proteins play no role at all, and where pH takes the lead. This is the case in ion trapping. Reversing the pH gradient to normal can be an important contribution to managing MDR. The drugs to manipulate pH exist, and most of them are FDA approved and in clinical use for other purposes. Furthermore, they have low or no toxicity and are inexpensive compared with any chemotherapeutic treatment. Repurposing these drugs and combining them in a reasonable fashion is one of the points proposed in this paper, which discusses the relationship between cancer’s peculiar pH and MDR.

  • review-article
    Mylena Ortiz, Emma Wabel, Kerry Mitchell, Sachi Horibata

    Ovarian cancer is one of the most lethal gynecologic cancers. The standard therapy for ovarian cancer has been the same for the past two decades, a combination treatment of platinum with paclitaxel. Recently, the FDA approved three new therapeutic drugs, two poly (ADP-ribose) polymerase inhibitors (olaparib and niraparib) and one vascular endothelial growth factor inhibitor (bevacizumab) as maintenance therapies for ovarian cancer. In this review, we summarize the resistance mechanisms for conventional platinum-based chemotherapy and for the newly FDA-approved drugs.

  • review-article
    Naushair Hussain, Deea Das, Atreyi Pramanik, Manoj K Pandey, Vivek Joshi, Kartick C. Pramanik

    Pancreatic cancer is ranked as the fourth leading cause of cancer-related mortality and is predicted to become the second leading cause of cancer-related death by 2030. The cause of this high mortality rate is due to pancreatic ductal adenocarcinoma’s rapid progression and metastasis, and development of drug resistance. Today, cancer immunotherapy is becoming a strong candidate to not only treat various cancers but also to combat against chemoresistance. Studies have suggested that complement system pathways play an important role in cancer progression and chemoresistance, especially in pancreatic cancer. A recent report also suggested that several signaling pathways play an important role in causing chemoresistance in pancreatic cancer, major ones including nuclear factor kappa B, signal transducer and activator of transcription 3, c-mesenchymal-epithelial transition factor, and phosphoinositide-3-kinase/protein kinase B. In addition, it has also been proven that the complement system has a very active role in establishing the tumor microenvironment, which would aid in promoting tumorigenesis, progression, metastasis, and recurrence. Interestingly, it has been shown that the downstream products of the complement system directly upregulate inflammatory mediators, which in turn activate these chemo-resistant pathways. Therefore, targeting complement pathways could be an innovative approach to combat against pancreatic cancer drugs resistance. In this review, we have discussed the role of complement system pathways in pancreatic cancer drug resistance and a special focus on the complement as a therapeutic target in pancreatic cancer.

  • review-article
    Vanessa Eulo, Brian A. Van Tine

    The emergence of immunotherapy as a cancer therapy has dramatically changed the treatment paradigm of systemic cancer therapy. There have been several trials evaluating immune checkpoint blockade (ICI) in soft tissue sarcoma. While there is generally a limited response in sarcoma, a subset of patients has durable responses to immunotherapy. This is attributable to a variety of factors including histologic subtype, tumor-infiltrating lymphocytes, and the tumor microenvironment among others. There is ongoing translational and clinical research evaluating ICI resistance in sarcoma and identifying therapeutic strategies to overcome this resistance. Herein, we provide a review of the current data, proposed mechanisms of resistance, and potential approaches to overcome this resistance.

  • review-article
    Vicenç Ruiz de Porras

    Bladder cancer (BC) is the tenth most common cancer, and its incidence is steadily rising worldwide, with the highest rates in developed countries. Neoadjuvant cisplatin-based chemotherapy followed by radical cystectomy is the standard therapy for patients with muscle-invasive bladder cancer. However, less than 50% of patients initially respond to this treatment and nearly all of them eventually develop resistance, which is an important barrier to long-term survival. Therefore, there is an urgent need to understand the mechanisms of cisplatin resistance in BC and develop ways to counteract them. Several preclinical studies have demonstrated that naturally derived bioactive compounds, such as phytochemicals and flavonoids, can enhance the antitumor activity of cisplatin, with minimal side effects, by targeting different pathways involved in cisplatin sensitivity and resistance. However, their poor bioavailability has been one of the main problems for their successful introduction into clinical practice. At present, however, many new formulations with greatly increased bioavailability are under study in several clinical trials with encouraging results.

  • review-article
    Quinty Hansen, Costa Bachas, Linda Smit, Jacqueline Cloos

    In acute myeloid leukemia (AML), a small cell population that contains stem cell features such as lack of differentiation, self-renewal potential, and drug resistance, can be identified. These so-called leukemic stem cells (LSCs) are thought to be responsible for relapse initiation after initial treatment leading to successful eradication of the bulk AML cell population. Since many studies have aimed to characterize and eliminate LSCs to prevent relapse and increase survival rates of patients, LSCs are one of the best characterized cancer stem cells. The specific elimination of LSCs, while sparing the healthy normal hematopoietic stem cells (HSCs), is one of the major challenges in the treatment of leukemia. This review focuses on several surface markers and intracellular transcription factors that can distinguish AML LSCs from HSCs and, therefore, specifically eliminate these stem cell-like leukemic cells. Moreover, previous and ongoing clinical trials of acute leukemia patients treated with therapies targeting these markers are discussed. In contrast to knowledge on LSCs in AML, insight into LSCs in acute lymphoid leukemia (ALL) is limited. This review therefore also addresses the latest insight into LSCs in ALL.

  • review-article
    Deanna Tiek, Shi-Yuan Cheng

    Cancer drug resistance is one of the main barriers to overcome to ensure durable treatment responses. While many pivotal advances have been made in first combination therapies, then targeted therapies, and now broadening out to immunomodulatory drugs or metabolic targeting compounds, drug resistance is still ultimately universally fatal. In this brief review, we will discuss different strategies that have been used to fight drug resistance from synthetic lethality to tumor microenvironment modulation, focusing on the DNA damage response and tumor metabolism both within tumor cells and their surrounding microenvironment. In this way, with a better understanding of both targetable mutations in combination with the metabolism, smarter drugs may be designed to combat cancer drug resistance.

  • review-article
    Faustine Ong, Kunhwa Kim, Marina Y. Konopleva

    Acute myeloid leukemia (AML) is historically associated with poor prognosis, especially in older AML patients unfit for intensive chemotherapy. The development of Venetoclax, a potent oral BH3 (BCL-2 homology domain 3) mimetic, has transformed the AML treatment. However, the short duration of response and development of resistance remain major concerns. Understanding mechanisms of resistance is pivotal to devising new strategies and designing rational drug combination regimens. In this review, we will provide a comprehensive summary of the known mechanisms of resistance to Venetoclax and discuss Venetoclax-based combination therapies. Key contributing factors to Venetoclax resistance include dependencies on alternative anti-apoptotic BCL-2 family proteins and selection of the activating kinase mutations. Mutational landscape governing response to Venetoclax and strategic approaches developed considering current knowledge of mechanisms of resistance will be addressed.

  • review-article
    Pascale Palassin, Marion Lapierre, Sandrine Bonnet, Marie-Jeanne Pillaire, Balázs Győrffy, Catherine Teyssier, Stéphan Jalaguier, Jean-Sébastien Hoffmann, Vincent Cavaillès, Audrey Castet-Nicolas

    Aim: The transcription factor RIP140 (receptor interacting protein of 140 kDa) is involved in intestinal tumorigenesis. It plays a role in the control of microsatellite instability (MSI), through the regulation of MSH2 and MSH6 gene expression. The aim of this study was to explore its effect on the expression of POLK, the gene encoding the specialized translesion synthesis (TLS) DNA polymerase κ known to perform accurate DNA synthesis at microsatellites.

    Methods: Different mouse models and engineered human colorectal cancer (CRC) cell lines were used to analyze by RT-qPCR, while Western blotting and luciferase assays were used to elucidate the role of RIP140 on POLK gene expression. Published DNA microarray datasets were reanalyzed. The in vitro sensitivity of CRC cells to methyl methane sulfonate and cisplatin was determined.

    Results: RIP140 positively regulates, at the transcriptional level, the expression of the POLK gene, and this effect involves, at least partly, the p53 tumor suppressor. In different cohorts of CRC biopsies (with or without MSI), a strong positive correlation was observed between RIP140 and POLK gene expression. In connection with its effect on POLK levels and the TLS function of this polymerase, the cellular response to methyl methane sulfonate was increased in cells lacking the Rip140 gene. Finally, the association of RIP140 expression with better overall survival of CRC patients was observed only when the corresponding tumors exhibited low levels of POLK, thus strengthening the functional link between the two genes in human CRC.

    Conclusion: The regulation of POLK gene expression by RIP140 could thus contribute to the maintenance of microsatellite stability, and more generally to the control of genome integrity.

  • review-article
    Peter G. Rose

    In view of the high risk of recurrent disease in stage III and IV ovarian cancer following primary first-line chemotherapy, a variety of maintenance and consolidation treatment strategies have been developed. These have included: radiation, intravenous or intraperitoneal chemotherapy, targeted therapies, and immunotherapy. Popular at this time is the use of Poly-adenosine ribose polymerase (PARP) inhibitors and bevacizumab as maintenance therapy. What effect these maintenance or consolidation therapies have on subsequent response to therapy, specifically platinum-based chemotherapy, is only beginning to be studied. In this manuscript, we review the impact of PARP inhibitors and bevacizumab as well as radiation and maintenance chemotherapy on subsequent response to treatment. Prior use of bevacizumab does not appear to adversely affect subsequent response to platinum-based chemotherapy or platinum-based chemotherapy with bevacizumab. Prior therapy with PARP inhibitors induces platinum resistance to subsequent platinum-based therapy and negates classic predictors of response such as platinum-free interval and breast cancer susceptibility gene (BRCA) mutational status.

  • review-article
    Michael J. Flynn, Jonathan A. Ledermann

    Definitions of platinum resistance have been questioned and changed over the last five years, even though no predictive biomarker of resistance exists. These have sculpted how we approach platinum retreatment and, consequently, how we devise new treatment strategies for those patients with tumour progression on platinum therapy. Platinum-non-eligible ovarian cancer is treated with single-agent non-platinum drugs. When bevacizumab can be added to chemotherapy, progression-free survival improves significantly. For patients with a BRCA mutation, PARP inhibitor monotherapy is an option compared to chemotherapy. There is currently no clearly identified role for immune-checkpoint inhibition in this patient population. This review describes some of the challenges in treating patients with platinum resistance and suggests refinements in the selection of patients most likely to benefit from targeting a DNA damage response, angiogenesis or immune modulation. It also describes novel agents of interest and possible mechanisms of the synergy of therapeutic combinations.

  • review-article
    Tengda Zhao, Xueping Wang, Liwu Fu, Ke Yang

    A dysbiosis in microbial diversity or functionality can promote disease development. Emerging preclinical and clinical evidence emphasizes the interplay between microbiota and both disease evolution and the treatment response of different cancers. One bacterium that has garnered much attention in a few cancer microbiota studies is Fusobacterium nucleaum (Fn). To provide updated knowledge of the functional role of Fn in cancer prevention and management, this review summarizes the relationship among Fn, cancer, and chemoimmunotherapy response, with the potential mechanisms of action also intensively discussed, which will benefit the development of strategies to prevent or treat cancer via Fn-based therapeutic interventions.

  • review-article
    Tanja Pejovic, Katherine Fitch, Gordon Mills

    PolyADP ribose polymerase inhibitors (PARPi) have transformed the treatment of ovarian cancer. Particularly in high-grade serous ovarian cancer (HGSOC), a disease characterized by homologous recombination deficiency (HRD), PARPi have had a rapid and profound impact on the disease course, as well as biologic and biomarker definitions of HGSOC, thereby creating a paradigm shift in the approach to treatment. In this review, we discuss the role of PARPi in the maintenance treatment of HGSOC, its effect on platinum sensitivity, and cross-resistance between platinum and PARP inhibitors.

  • review-article
    Prem Prakash Kushwaha, Shiv Verma, Shashank Kumar, Sanjay Gupta

    Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities.

  • review-article
    Ahmed M. Elshazly, David A. Gewirtz

    Breast cancer (BC) is the second most common cause of cancer-related deaths and the most frequently diagnosed cancer in females. Among breast cancer types, HER2-positive breast cancer occurs in nearly 20% of human breast cancers and is associated with increased aggressiveness, poor prognosis, and shortened overall survival. HER2+ breast cancer is currently managed with multidisciplinary treatment strategies including surgery, radiation, chemotherapy, and targeted therapy. Drug resistance remains a continuing challenge, especially to targeted therapy utilizing monoclonal antibodies and tyrosine kinase inhibitors. This review discusses some of the recent molecular mechanisms that are involved in the development of resistance to Her2-targeted therapies including the PI3K/Akt/mTOR pathway, IGF-IR, Src, c-MET, the PP2A family, CD36, p27kip1, and miRNAs.

  • review-article
    Ravi Velaga, Sunao Tanaka, Masakazu Toi

    Over the past two decades, high sensitivity to HER2-amplified primary breast cancers has been achieved with HER2-targeted therapies. CDK4/6 inhibitors have long been identified as a potential treatment option for advanced breast cancer patients. However, acquired HER2 heterogeneity leading to resistance during the treatment has been identified as a bottleneck. This review focuses on the recent resistance mechanisms identified and potential therapeutic targets for conventional and combination endocrine therapies with CDK4/6 inhibitors by various breast cancer clinical trials and research groups in HER amplified and/or mutated breast cancer tumour. Activating HER2 alterations, JNK pathway, hyperactivated TORC1, co-mutations in HER2 and HER3, phenotypic changes of HER2, and few other advanced findings are identified as potential therapeutic targets in treating current HER2 endocrine therapy-resistant tumour. Along with the HER2-focused resistance mechanisms, we also describe how the microbiome may play a role in breast cancer therapy and its potential for new therapeutic strategies to overcome drug resistance in breast cancers.

  • review-article
    Gregory Bick, Jasmine Zhang, Elyse E. Lower, Xiaoting Zhang

    Breast cancer is one of the most common cancer and leading causes of death in women in the United States and Worldwide. About 90% of breast cancers belong to ER+ or HER2+ subtypes and are driven by key breast cancer genes Estrogen Receptor and HER2, respectively. Despite the advances in anti-estrogen (endocrine) and anti-HER2 therapies for the treatment of these breast cancer subtypes, unwanted side effects, frequent recurrence and resistance to these treatments remain major clinical challenges. Recent studies have identified ER coactivator MED1 as a key mediator of ER functions and anti-estrogen treatment resistance. Interestingly, MED1 is also coamplified with HER2 and activated by the HER2 signaling cascade, and plays critical roles in HER2-mediated tumorigenesis and response to anti-HER2 treatment as well. Thus, MED1 represents a novel crosstalk point of the HER2 and ER pathways and a highly promising new therapeutic target for ER+ and HER2+ breast cancer treatment. In this review, we will discuss the recent progress on the role of this key ER/HER2 downstream effector MED1 in breast cancer therapy resistance and our development of an innovative RNA nanotechnology-based approach to target MED1 for potential future breast cancer therapy to overcome treatment resistance.

  • review-article
    Yuting Lu, Yongzhao Shao

    Aim: This study aimed to translate a known drug-resistance mechanism of long-term CSF1R inhibition into multicellular biomarkers that can serve as potential therapeutic targets as well as predictive markers for the survival of glioma patients.

    Methods: Using existing data from a published mouse study of drug resistance in immunotherapy for glioma, we identified multicellular differentially expressed genes (DEGs) between drug-sensitive and drug-resistant mice and translated the DEGs in mouse genome to human homolog. We constructed correlation gene networks for drug resistance in mice and glioma patients and selected candidate genes via concordance analysis of human with mouse gene networks. Markers of drug resistance and an associated predictive signature for patient survival were developed using regularized Cox models with data of glioma patients from The Cancer Genome Atlas (TCGA) database. Predictive performance of the identified predictive signature was evaluated using an independent human dataset from the Chinese Glioma Genome Atlas (CGGA) database.

    Results: Fourteen genes (CCL22, ADCY2, PDK1, ZFP36, CP, CD2, PLAUR, ACAP1, COL5A1, FAM83D, PBK, FANCA, ANXA7, and TACC3) were identified as genetic biomarkers that were all associated with pathways in glioma progression and drug resistance. Five of the 14 genes (CCL22, ADCY2, PDK1, CD2, and COL5A1) were used to construct a signature that is predictive of patient survival in the proneural subtype GBM patients with an AUC under the time-dependent receiver operating characteristic (ROC) of 2-year survival equal to 0.89. This signature also shows promising predictive accuracy for the survival of LGG patients but not for non-proneural type GBMs.

    Conclusion: Our translational approach can utilize gene correlation networks from multiple types of cells in the tumor microenvironment of animals. The identified biomarkers of drug resistance have good power to predict patient survival in some major subtypes of gliomas (the proneural subtype of GBM and LGG). The expression levels of the biomarkers of drug resistance may be modified for the development of personalized immunotherapies to prolong survival for a large portion of glioma patients.