Transcriptional coactivator MED1 in the interface of anti-estrogen and anti-HER2 therapeutic resistance

Gregory Bick , Jasmine Zhang , Elyse E. Lower , Xiaoting Zhang

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (2) : 498 -510.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (2) :498 -510. DOI: 10.20517/cdr.2022.33
review-article

Transcriptional coactivator MED1 in the interface of anti-estrogen and anti-HER2 therapeutic resistance

Author information +
History +
PDF

Abstract

Breast cancer is one of the most common cancer and leading causes of death in women in the United States and Worldwide. About 90% of breast cancers belong to ER+ or HER2+ subtypes and are driven by key breast cancer genes Estrogen Receptor and HER2, respectively. Despite the advances in anti-estrogen (endocrine) and anti-HER2 therapies for the treatment of these breast cancer subtypes, unwanted side effects, frequent recurrence and resistance to these treatments remain major clinical challenges. Recent studies have identified ER coactivator MED1 as a key mediator of ER functions and anti-estrogen treatment resistance. Interestingly, MED1 is also coamplified with HER2 and activated by the HER2 signaling cascade, and plays critical roles in HER2-mediated tumorigenesis and response to anti-HER2 treatment as well. Thus, MED1 represents a novel crosstalk point of the HER2 and ER pathways and a highly promising new therapeutic target for ER+ and HER2+ breast cancer treatment. In this review, we will discuss the recent progress on the role of this key ER/HER2 downstream effector MED1 in breast cancer therapy resistance and our development of an innovative RNA nanotechnology-based approach to target MED1 for potential future breast cancer therapy to overcome treatment resistance.

Keywords

MED1 / transcription cofactor / estrogen receptor / HER2 / therapy resistance / RNA nanotechnology

Cite this article

Download citation ▾
Gregory Bick, Jasmine Zhang, Elyse E. Lower, Xiaoting Zhang. Transcriptional coactivator MED1 in the interface of anti-estrogen and anti-HER2 therapeutic resistance. Cancer Drug Resistance, 2022, 5(2): 498-510 DOI:10.20517/cdr.2022.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Perou CM,Eisen MB.Molecular portraits of human breast tumours.Nature2000;406:747-52

[2]

Prat A.Deconstructing the molecular portraits of breast cancer.Mol Oncol2011;5:5-23 PMCID:PMC5528267

[3]

Osborne CK.Mechanisms of endocrine resistance in breast cancer.Annu Rev Med2011;62:233-47 PMCID:PMC3656649

[4]

Pegram MD.Treating the HER2 pathway in early and advanced breast cancer.Hematol Oncol Clin North Am2013;27:751-65, viii

[5]

Deroo BJ.Estrogen receptors and human disease.J Clin Invest2006;116:561-70 PMCID:PMC2373424

[6]

Goutsouliak K,Sethunath V.Towards personalized treatment for early stage HER2-positive breast cancer.Nat Rev Clin Oncol2020;17:233-50 PMCID:PMC8023395

[7]

Higgins MJ.Targeted therapies for breast cancer.J Clin Invest2011;121:3797-803 PMCID:PMC3195649

[8]

Jordan VC.50th anniversary of the first clinical trial with ICI 46,474 (tamoxifen): then what happened?.Endocr Relat Cancer2021;28:R11-30 PMCID:PMC7780369

[9]

Ma CX,Chmielewska I.Mechanisms of aromatase inhibitor resistance.Nat Rev Cancer2015;15:261-75

[10]

Rexer BN.Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications.Crit Rev Oncog2012;17:1-16 PMCID:PMC3394454

[11]

Arteaga CL.ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics.Cancer Cell2014;25:282-303 PMCID:PMC4018830

[12]

Reinert T,Han A.Endocrine Therapy in Clinical Practice.Estrogen Receptor and Breast Cancer.2019. p. 215-40

[13]

Abderrahman B.A novel strategy to improve women’s health: selective estrogen receptor modulators. Estrogen Receptor and Breast Cancer. Humana Press, Cham; 2019. p. 189-213

[14]

Hanker AB,Arteaga CL.Overcoming endocrine resistance in breast cancer.Cancer Cell2020;37:496-513 PMCID:PMC7169993

[15]

Abderrahman B.The first targeted therapy to treat cancer: the tamoxifen tale. Estrogen Receptor and Breast Cancer. Humana Press, Cham; 2019. p. 151-88

[16]

Eisen A,Shelley W,Pritchard KI.Aromatase inhibitors in adjuvant therapy for hormone receptor positive breast cancer: a systematic review.Cancer Treat Rev2008;34:157-74

[17]

Deeks ED.Fulvestrant: a review in advanced breast cancer not previously treated with endocrine therapy.Drugs2018;78:131-7

[18]

Fu X,Veeraraghavan J,Schiff R.Molecular mechanisms of endocrine resistance. Estrogen Receptor and Breast Cancer. Humana Press, Cham; 2019. p. 265-307

[19]

Razavi P,Xu G.The genomic landscape of endocrine-resistant advanced breast cancers.Cancer Cell2018;34:427-438.e6 PMCID:PMC6327853

[20]

Kurokawa H,Simpson JF.Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells.Cancer Res2000;60:5887-94

[21]

Formisano L,Young CD.Association of FGFR1 with ERα maintains ligand-independent ER Transcription and mediates resistance to estrogen deprivation in ER+ breast cancer.Clin Cancer Res2017;23:6138-50 PMCID:PMC6681458

[22]

Fox EM,Balko JM.A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer.Cancer Res2011;71:6773-84 PMCID:PMC3206206

[23]

Sanchez CG,Crowder RJ.Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer.Breast Cancer Res2011;13:R21 PMCID:PMC3219179

[24]

Miller TW,González-Angulo AM.Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer.J Clin Invest2010;120:2406-13 PMCID:PMC2898598

[25]

Fu X,Biswal NC.Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase.Breast Cancer Res2014;16:430 PMCID:PMC4303114

[26]

André F,Rubovszky G.SOLAR-1 Study GroupAlpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer.N Engl J Med2019;380:1929-40

[27]

Baselga J,Piccart M.Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.N Engl J Med2012;366:520-9 PMCID:PMC5705195

[28]

Neven P,Jerusalem G.Ribociclib plus fulvestrant in the treatment of breast cancer.Expert Rev Anticancer Ther2021;21:93-106

[29]

Finn RS,Rugo HS.Palbociclib and letrozole in advanced breast cancer.N Engl J Med2016;375:1925-36

[30]

Chong QY,Bui NL.A unique CDK4/6 inhibitor: current and future therapeutic strategies of abemaciclib.Pharmacol Res2020;156:104686

[31]

Arena C,Caponio VCA.Everolimus therapy and sideeffects: A systematic review and meta-analysis.Int J Oncol2021;59:54

[32]

Spring LM,Moy B.Clinical management of potential toxicities and drug interactions related to cyclin-dependent kinase 4/6 Inhibitors in breast cancer: practical considerations and recommendations.Oncologist2017;22:1039-48 PMCID:PMC5599204

[33]

Portman N,Carson E.Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer.Endocr Relat Cancer2019;26:R15-30

[34]

Valabrega G,Aglietta M.Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer.Ann Oncol2007;18:977-84

[35]

Kunte S,Montero AJ.Novel HER2-targeted therapies for HER2-positive metastatic breast cancer.Cancer2020;126:4278-88

[36]

Burguin A,Durocher F.Breast cancer treatments: updates and new challenges.J Pers Med2021;11:808 PMCID:PMC8399130

[37]

Testa U,Pelosi E.Breast cancer: a molecularly heterogenous disease needing subtype-specific treatments.Med Sci (Basel)2020;8:18 PMCID:PMC7151639

[38]

Murthy RK,Okines A.Tucatinib, trastuzumab, and capecitabine for her2-positive metastatic breast cancer.N Engl J Med2020;382:597-609

[39]

Isakoff SJ.Trastuzumab-DM1: building a chemotherapy-free road in the treatment of human epidermal growth factor receptor 2-positive breast cancer.J Clin Oncol2011;29:351-4

[40]

Pegram MD,Tsui CK.HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors.Clin Cancer Res2020;26:775-86

[41]

Keam SJ.Trastuzumab Deruxtecan: First approval.Drugs2020;80:501-8

[42]

Jerusalem G,Kim SB.HER2+ breast cancer treatment and cardiotoxicity: monitoring and management.Breast Cancer Res Treat2019;177:237-50 PMCID:PMC6661020

[43]

Dang C,Najita J.Cardiac outcomes of patients receiving adjuvant weekly paclitaxel and trastuzumab for node-negative, ERBB2-positive breast cancer.JAMA Oncol2016;2:29-36 PMCID:PMC5654518

[44]

Boekhout AH,Schellens JH.Trastuzumab.Oncologist2011;16:800-10 PMCID:PMC3228213

[45]

Li X,Ding Y.Posttranscriptional upregulation of HER3 by HER2 mRNA induces trastuzumab resistance in breast cancer.Mol Cancer2018;17:113 PMCID:PMC6090962

[46]

Nahta R,Zhang B,Esteva FJ.Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells.Cancer Res2005;65:11118-28

[47]

Browne BC,Venkatesan N.Inhibition of IGF1R activity enhances response to trastuzumab in HER-2-positive breast cancer cells.Ann Oncol2011;22:68-73

[48]

Pohlmann PR,Mernaugh R.Resistance to trastuzumab in breast cancer.Clin Cancer Res2009;15:7479-91 PMCID:PMC3471537

[49]

Bick G,Zhang X.Estrogen receptor-mediated gene transcription and cistrome. Estrogen Receptor and Breast Cancer. Humana Press, Cham; 2019. p. 49-70

[50]

Yi P,O’malley BW.Structural Studies with Coactivators for the Estrogen Receptor. Estrogen Receptor and Breast Cancer. Humana Press, Cham; 2019. p. 71-93.

[51]

Liu Z,Yang F.Enhancer activation requires trans-recruitment of a mega transcription factor complex.Cell2014;159:358-73 PMCID:PMC4465761

[52]

Yi P,Feng Q.Structural and functional impacts of ER coactivator sequential recruitment.Mol Cell2017;67:733-743.e4 PMCID:PMC5657569

[53]

Glass CK.The coregulator exchange in transcriptional functions of nuclear receptors.Genes Dev2000;14:121-41

[54]

Roeder RG.50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms.Nat Struct Mol Biol2019;26:783-91 PMCID:PMC6867066

[55]

Yang Y,Luo Z.Functional cooperation between co-amplified genes promotes aggressive phenotypes of HER2-positive breast cancer.Cell Rep2021;34:108822 PMCID:PMC8050805

[56]

Kang YK,Yuan CX.The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro.Proc Natl Acad Sci U S A2002;99:2642-7 PMCID:PMC122401

[57]

Malik S.The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.Nat Rev Genet2010;11:761-72 PMCID:PMC3217725

[58]

Li W,Oh S.Condensin I and II complexes license full estrogen receptor α-dependent enhancer activation.Mol Cell2015;59:188-202 PMCID:PMC5770188

[59]

Sabari BR,Boija A.Coactivator condensation at super-enhancers links phase separation and gene control.Science2018;361:eaar3958 PMCID:PMC6092193

[60]

Lee R,Kim YJ.CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates.Nucleic Acids Res2022;50:207-26 PMCID:PMC8855298

[61]

Zamudio AV,Henninger JE.Mediator condensates localize signaling factors to key cell identity genes.Mol Cell2019;76:753-766.e6 PMCID:PMC6898777

[62]

Fullwood MJ,Pan YF.An oestrogen-receptor-alpha-bound human chromatin interactome.Nature2009;462:58-64 PMCID:PMC2774924

[63]

Lai F,Cesaroni M.Activating RNAs associate with Mediator to enhance chromatin architecture and transcription.Nature2013;494:497-501 PMCID:PMC4109059

[64]

Li W,Ma Q.Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation.Nature2013;498:516-20 PMCID:PMC3718886

[65]

Chen Z,Wu D.Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth.EMBO J2011;30:2405-19 PMCID:PMC3116285

[66]

Palacio M.Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription.J Mol Biol2022;434:167216 PMCID:PMC8748285

[67]

Tsai KL,Gopalan S.Mediator structure and rearrangements required for holoenzyme formation.Nature2017;544:196-201 PMCID:PMC6692119

[68]

Schier AC.Structure and mechanism of the RNA polymerase II transcription machinery.Genes Dev2020;34:465-88 PMCID:PMC7111264

[69]

Zhang H,Mattoo RUH.Mediator structure and conformation change.Mol Cell2021;81:1781-1788.e4

[70]

Schilbach S,Tegunov D.Structures of transcription pre-initiation complex with TFIIH and Mediator.Nature2017;551:204-9 PMCID:PMC6078178

[71]

Zhu Y,Jain S.Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer.Proc Natl Acad Sci U S A1999;96:10848-53 PMCID:PMC17971

[72]

Leonard M.Estrogen receptor coactivator mediator subunit 1 (MED1) as a tissue-specific therapeutic target in breast cancer.J Zhejiang Univ Sci B2019;20:381-90 PMCID:PMC6568227

[73]

Jacot W,Zaman K,Lamy PJ.The HER2 amplicon in breast cancer: topoisomerase IIA and beyond.Biochim Biophys Acta2013;1836:146-57

[74]

Luoh S.Amplification and expression of genes from the 17q11~q12 amplicon in breast cancer cells.Cancer Genetics and Cytogenetics2002;136:43-7

[75]

Zhang X,Fukuda A.MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription.Mol Cell2005;19:89-100

[76]

Heery DM,Hoare S.A signature motif in transcriptional co-activators mediates binding to nuclear receptors.Nature1997;387:733-6

[77]

Savkur RS.The coactivator LXXLL nuclear receptor recognition motif.J Pept Res2004;63:207-12

[78]

Plevin MJ,Ikura M.The LxxLL motif: a multifunctional binding sequence in transcriptional regulation.Trends Biochem Sci2005;30:66-9

[79]

Coulthard VH,Heery DM.An extended LXXLL motif sequence determines the nuclear receptor binding specificity of TRAP220.J Biol Chem2003;278:10942-51

[80]

Jiang P,Ito M.Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation.Proc Natl Acad Sci U S A2010;107:6765-70 PMCID:PMC2872411

[81]

Yang Y,Zhang Y.HER2-driven breast tumorigenesis relies upon interactions of the estrogen receptor with coactivator MED1.Cancer Res2018;78:422-35 PMCID:PMC5771879

[82]

Cui J,Wu T.Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells.Cancer Res2012;72:5625-34 PMCID:PMC4141533

[83]

Lupien M,Bailey ST.Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance.Genes Dev2010;24:2219-27 PMCID:PMC2947773

[84]

Nagalingam A,Ryden L.Med1 plays a critical role in the development of tamoxifen resistance.Carcinogenesis2012;33:918-30 PMCID:PMC3324449

[85]

Ross-Innes CS,Teschendorff AE.Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.Nature2012;481:389-93 PMCID:PMC3272464

[86]

Murtaza M,Tsui DW.Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA.Nature2013;497:108-12

[87]

Zhang L,Leonard M.Silencing MED1 sensitizes breast cancer cells to pure anti-estrogen fulvestrant in vitro and in vivo.PLoS One2013;8:e70641 PMCID:PMC3728322

[88]

Zhang Y,Shu Y.Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles.ACS Nano2017;11:335-46 PMCID:PMC5488869

[89]

Germer K,Guo P. Conjugation of RNA aptamer to RNA nanoparticles for targeted drug delivery. RNA nanotechnology and therapeutics. CRC Press; 2013. p.399-408. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/b15152-30/conjugation-rna-aptamer-rna-nanoparticles-targeted-drug-delivery-katherine-germer-fengmei-pi-peixuan-guo-xiaoting-zhang [Last accessed on 8 Apr 2022]

[90]

Guo P.The emerging field of RNA nanotechnology.Nat Nanotechnol2010;5:833-42 PMCID:PMC3149862

[91]

Jasinski D,Binzel DW.Advancement of the Emerging Field of RNA Nanotechnology.ACS Nano2017;11:1142-64 PMCID:PMC5333189

[92]

Shu D,Haque F,Guo P.Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics.Nature Nanotech2011;6:658-67 PMCID:PMC3189281

[93]

Leonard M,Yang Y.Emerging therapeutic approaches to overcome breast cancer endocrine resistance. Estrogen Receptor and Breast Cancer. Humana Press, Cham; 2018. p.379-403.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/