DNA damage and metabolic mechanisms of cancer drug resistance

Deanna Tiek , Shi-Yuan Cheng

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (2) : 368 -79.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (2) :368 -79. DOI: 10.20517/cdr.2021.148
review-article

DNA damage and metabolic mechanisms of cancer drug resistance

Author information +
History +
PDF

Abstract

Cancer drug resistance is one of the main barriers to overcome to ensure durable treatment responses. While many pivotal advances have been made in first combination therapies, then targeted therapies, and now broadening out to immunomodulatory drugs or metabolic targeting compounds, drug resistance is still ultimately universally fatal. In this brief review, we will discuss different strategies that have been used to fight drug resistance from synthetic lethality to tumor microenvironment modulation, focusing on the DNA damage response and tumor metabolism both within tumor cells and their surrounding microenvironment. In this way, with a better understanding of both targetable mutations in combination with the metabolism, smarter drugs may be designed to combat cancer drug resistance.

Keywords

Cancer drug resistance / drug resistance / metabolism / DNA damage / DNA repair / hypoxia / synthetic lethality / overcoming resistance

Cite this article

Download citation ▾
Deanna Tiek, Shi-Yuan Cheng. DNA damage and metabolic mechanisms of cancer drug resistance. Cancer Drug Resistance, 2022, 5(2): 368-79 DOI:10.20517/cdr.2021.148

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Farber S.Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid.N Engl J Med1948;238:787-93

[2]

Crofton J.Chemotherapy of pulmonary tuberculosis.Br Med J1959;1:1610-4 PMCID:PMC1993570

[3]

Vasan N,Hyman DM.A view on drug resistance in cancer.Nature2019;575:299-309 PMCID:PMC8008476

[4]

Hanahan D.Hallmarks of cancer: the next generation.Cell2011;144:646-74

[5]

Schafer J, Liu H, Levenson AS, Horiguchi J, Chen Z, Jordan V. Estrogen receptor α mediated induction of the transforming growth factor α gene by estradiol and 4-hydroxytamoxifen in MDA-MB-231 breast cancer cells.J Steroid Biochem Mol Biol2001;78:41-50

[6]

Huggins C.Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate.CA Cancer J Clin1972;22:232-40

[7]

Hicks DG.HER2+ breast cancer: review of biologic relevance and optimal use of diagnostic tools.Am J Clin Pathol2008;129:263-73

[8]

Fukuoka M,Giaccone G.Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected].J Clin Oncol2003;21:2237-46

[9]

Iwai Y,Tanaka Y,Honjo T.Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.Proc Natl Acad Sci U S A2002;99:12293-7 PMCID:PMC129438

[10]

Leach DR,Allison JP.Enhancement of antitumor immunity by CTLA-4 blockade.Science1996;271:1734-6

[11]

Shaked Y.The pro-tumorigenic host response to cancer therapies.Nat Rev Cancer2019;19:667-85

[12]

Killock D.Brain cancer: chemoradiotherapy for low-grade glioma: battle won, but the war goes on.Nat Rev Clin Oncol2016;13:328-9

[13]

Hegi ME,Gorlia T.MGMT gene silencing and benefit from temozolomide in glioblastoma.N Engl J Med2005;352:997-1003

[14]

Yu W,Wei Q.O6-Methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy.Front Oncol2019;9:1547 PMCID:PMC6979006

[15]

Bobustuc GC,Thompson M.MGMT inhibition suppresses survivin expression in pancreatic cancer.Pancreas2015;44:626-35

[16]

Quinn JA,Reardon DA.Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma.J Clin Oncol2009;27:1262-7 PMCID:PMC2667825

[17]

Huang RX.DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer.Signal Transduct Target Ther2020;5:60 PMCID:PMC7192953

[18]

Blackford AN.ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response.Mol Cell2017;66:801-17

[19]

Lu H,Beckmann PJ,Davis AJ.DNA-PKcs promotes chromatin decondensation to facilitate initiation of the DNA damage response.Nucleic Acids Res2019;47:9467-79 PMCID:PMC6765147

[20]

Douglas P,Morrice N,Lees-Miller SP.DNA-PK-dependent phosphorylation of Ku70/80 is not required for non-homologous end joining.DNA Repair (Amst)2005;4:1006-18

[21]

Timme CR,O’Neill JW,Tofilon PJ.The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts.Mol Cancer Ther2018;17:1207-16 PMCID:PMC6322200

[22]

van Oorschot B,Di Franco S.Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment.Oncotarget2016;7:65504-13 PMCID:PMC5323171

[23]

Yang L,Sun C.Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation.Oncol Lett2015;10:2856-64 PMCID:PMC4665689

[24]

Willoughby CE,Thomas HD.Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy.J Clin Invest2020;130:258-71 PMCID:PMC6934184

[25]

Drayton RM.Molecular mechanisms of cisplatin resistance in bladder cancer.Expert Rev Anticancer Ther2012;12:271-81

[26]

Chen J,Yuan Y.Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair-inhibiting (HYDRI) nanomedicine.Sci Adv2021;7:eabc5267 PMCID:PMC7997498

[27]

Farmer H,Lord CJ.Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.Nature2005;434:917-21

[28]

Bryant HE,Thomas HD.Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.Nature2005;434:913-7

[29]

Satoh MS.Role of poly(ADP-ribose) formation in DNA repair.Nature1992;356:356-8

[30]

Pilié PG,Mills GB.State-of-the-art strategies for targeting the DNA damage response in cancer.Nat Rev Clin Oncol2019;16:81-104 PMCID:PMC8327299

[31]

Ashworth A,Reis-Filho JS.Genetic interactions in cancer progression and treatment.Cell2011;145:30-8

[32]

Lord CJ.PARP inhibitors: synthetic lethality in the clinic.Science2017;355:1152-8 PMCID:PMC6175050

[33]

Dréan A,Ashworth A.PARP inhibitor combination therapy.Crit Rev Oncol Hematol2016;108:73-85

[34]

Purnell MR.Novel inhibitors of poly(ADP-ribose) synthetase.Biochem J1980;185:775-7 PMCID:PMC1161458

[35]

Shen Y,Feng Y.BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency.Clin Cancer Res2013;19:5003-15 PMCID:PMC6485449

[36]

Boussios S,Moschetta M.Poly (ADP-Ribose) polymerase inhibitors: talazoparib in ovarian cancer and beyond.Drugs R D2020;20:55-73 PMCID:PMC7221042

[37]

Litton JK,Ettl J.Talazoparib in patients with advanced breast cancer and a germline BRCA mutation.N Engl J Med2018;379:753-63

[38]

Boussios S,Shah S.Aberrations of DNA repair pathways in prostate cancer: a cornerstone of precision oncology.Expert Opin Ther Targets2021;25:329-33

[39]

Clarke N,Alekseev B.Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Oncol2018;19:975-86

[40]

Dempke WCM,Dale SP.Programmed cell death ligand-1 (PD-L1) as a biomarker for non-small cell lung cancer (NSCLC) treatment-are we barking up the wrong tree?.Transl Lung Cancer Res2018;7:S275-9 PMCID:PMC6193918

[41]

Gandhi L,Gadgeel S.KEYNOTE-189 InvestigatorsPembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer.N Engl J Med2018;378:2078-92

[42]

Antonia SJ,Daniel D.PACIFIC InvestigatorsDurvalumab after chemoradiotherapy in stage III non-small-cell lung cancer.N Engl J Med2017;377:1919-29

[43]

McGrail DJ,Rashid NU.High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types.Ann Oncol2021;32:661-72 PMCID:PMC8053682

[44]

Le DT,Smith KN.Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.Science2017;357:409-13 PMCID:PMC5576142

[45]

Stone HB,Milas L.Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma.J Natl Cancer Inst1979;63:1229-35

[46]

Schapira E,Yeap BY.Improved overall survival and locoregional disease control with concurrent PD-1 pathway inhibitors and stereotactic radiosurgery for lung cancer patients with brain metastases.Int J Radiat Oncol Biol Phys2018;101:624-9

[47]

Sun W,Wang R,Sun Y.Targeting DNA damage repair for immune checkpoint inhibition: mechanisms and potential clinical applications.Front Oncol2021;11:648687 PMCID:PMC8137908

[48]

Pantelidou C,De Oliveria Taveira M.PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer.Cancer Discov2019;9:722-37 PMCID:PMC6548644

[49]

Färkkilä A,Casado J.Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer.Nat Commun2020;11:1459 PMCID:PMC7081234

[50]

Panieri E.ROS homeostasis and metabolism: a dangerous liason in cancer cells.Cell Death Dis2016;7:e2253 PMCID:PMC5143371

[51]

Pelicano H,Huang P.ROS stress in cancer cells and therapeutic implications.Drug Resist Updat2004;7:97-110

[52]

Szatrowski TP.Production of large amounts of hydrogen peroxide by human tumor cells.Cancer Res1991;51:794-8

[53]

Moloney JN.ROS signalling in the biology of cancer.Semin Cell Dev Biol2018;80:50-64

[54]

Veal EA,Morgan BA.Hydrogen peroxide sensing and signaling.Mol Cell2007;26:1-14

[55]

Jayavelu AK,Bauer R.NOX4-driven ROS formation mediates PTP inactivation and cell transformation in FLT3ITD-positive AML cells.Leukemia2016;30:473-83

[56]

Lee SR,Kwon J,Jeong W.Reversible inactivation of the tumor suppressor PTEN by H2O2.J Biol Chem2002;277:20336-42

[57]

Leslie NR,Lindsay YE,Gray A.Redox regulation of PI 3-kinase signalling via inactivation of PTEN.EMBO J2003;22:5501-10 PMCID:PMC213768

[58]

Cui Q,Assaraf YG.Modulating ROS to overcome multidrug resistance in cancer.Drug Resist Updat2018;41:1-25

[59]

Hangauer MJ,Ryan MJ.Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.Nature2017;551:247-50 PMCID:PMC5933935

[60]

Al-Mehdi AB,Swiger BM.Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription.Sci Signal2012;5:ra47 PMCID:PMC3565837

[61]

Oren Y,Cuoco MS.Cycling cancer persister cells arise from lineages with distinct programs.Nature2021;596:576-82

[62]

Hassannia B,Vanden Berghe T.Targeting ferroptosis to iron out cancer.Cancer Cell2019;35:830-49

[63]

Dixon SJ,Lamprecht MR.Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell2012;149:1060-72 PMCID:PMC3367386

[64]

Badgley MA,Maurer HC.Cysteine depletion induces pancreatic tumor ferroptosis in mice.Science2020;368:85-9 PMCID:PMC7681911

[65]

Zhu J.Metabolic regulation of cell growth and proliferation.Nat Rev Mol Cell Biol2019;20:436-50 PMCID:PMC6592760

[66]

Butler LM,Dehairs J.Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention.Adv Drug Deliv Rev2020;159:245-93 PMCID:PMC7736102

[67]

Stockwell BR,Bayir H.Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017;171:273-85 PMCID:PMC5685180

[68]

Veldman RJ,Hinrichs J.Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus.FASEB J2002;16:1111-3

[69]

Mannechez A,de Certaines JD,Le Moyec L.Proton NMR visible mobile lipid signals in sensitive and multidrug-resistant K562 cells are modulated by rafts.Cancer Cell Int2005;5:2 PMCID:PMC549536

[70]

Hajjaji N.Selective sensitization of tumors to chemotherapy by marine-derived lipids: a review.Cancer Treat Rev2013;39:473-88

[71]

Bauerschlag DO,Leonhardt P.Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer.J Transl Med2015;13:146 PMCID:PMC4504229

[72]

Wu X,Wang CJ.FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-κB and SP1.Proc Natl Acad Sci U S A2016;113:E6965-73 PMCID:PMC5111708

[73]

Kant S,Singh SM.Tumor growth retardation and chemosensitizing action of fatty acid synthase inhibitor orlistat on T cell lymphoma: implication of reconstituted tumor microenvironment and multidrug resistance phenotype.Biochim Biophys Acta2014;1840:294-302

[74]

Papaevangelou E,Box C,Chung YL.The effect of FASN inhibition on the growth and metabolism of a cisplatin-resistant ovarian carcinoma model.Int J Cancer2018;143:992-1002 PMCID:PMC6055739

[75]

Hoy AJ,Butler LM.Tumour fatty acid metabolism in the context of therapy resistance and obesity.Nat Rev Cancer2021;21:753-66

[76]

Caragher S,Shireman J.Temozolomide treatment increases fatty acid uptake in glioblastoma stem cells.Cancers (Basel)2020;12:3126 PMCID:PMC7693784

[77]

Wang T,Lee H.JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance.Cell Metab2018;27:136-50.e5 PMCID:PMC5777338

[78]

Luo J,Tao X,Zhang L.An indispensable role of CPT-1a to survive cancer cells during energy stress through rewiring cancer metabolism.Tumour Biol2016;

[79]

Dubey R,Nguyen HQ.Lipid droplets can promote drug accumulation and activation.Nat Chem Biol2020;16:206-13 PMCID:PMC6989039

[80]

Sirois I,Lafleur J.A unique morphological phenotype in chemoresistant triple-negative breast cancer reveals metabolic reprogramming and PLIN4 expression as a molecular vulnerability.Mol Cancer Res2019;17:2492-507

[81]

Cotte AK,Fredon M.Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance.Nat Commun2018;9:322 PMCID:PMC5778070

[82]

Schito L.Hypoxia-inducible factors: master regulators of cancer progression.Trends Cancer2016;2:758-70

[83]

Semenza GL.A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.Mol Cell Biol1992;12:5447-54 PMCID:PMC360482

[84]

Bhandari V,Bristow RG.PCAWG ConsortiumDivergent mutational processes distinguish hypoxic and normoxic tumours.Nat Commun2020;11:737 PMCID:PMC7002770

[85]

Jin MZ.The updated landscape of tumor microenvironment and drug repurposing.Signal Transduct Target Ther2020;5:166 PMCID:PMC7447642

[86]

Dico A, Martelli C, Diceglie C, Lucignani G, Ottobrini L. Hypoxia-inducible factor-1α activity as a switch for glioblastoma responsiveness to temozolomide.Front Oncol2018;8:249 PMCID:PMC6036118

[87]

Qiu GZ,Dai JX,Feng JH.Reprogramming of the tumor in the hypoxic niche: the emerging concept and associated therapeutic strategies.Trends Pharmacol Sci2017;38:669-86

[88]

Becker HM.Carbonic anhydrase IX and acid transport in cancer.Br J Cancer2020;122:157-67 PMCID:PMC7051959

[89]

Webb BA,Jacobson MP.Dysregulated pH: a perfect storm for cancer progression.Nat Rev Cancer2011;11:671-7

[90]

Schöning JP,Gu W.Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α.Clin Exp Pharmacol Physiol2017;44:153-61

[91]

Lacroix R,Kreutz M,Blank CU.Targeting tumor-associated acidity in cancer immunotherapy.Cancer Immunol Immunother2018;67:1331-48

[92]

Bosticardo M,Losana G,Forni G.Biased activation of human T lymphocytes due to low extracellular pH is antagonized by B7/CD28 costimulation.Eur J Immunol2001;31:2829-38

[93]

Sukumar M,Ji Y.Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function.J Clin Invest2013;123:4479-88 PMCID:PMC3784544

[94]

Pilon-Thomas S,El-Kenawi AE.Neutralization of tumor acidity improves antitumor responses to immunotherapy.Cancer Res2016;76:1381-90 PMCID:PMC4829106

[95]

Reshkin SJ,Harguindey S.Na+-H+ exchanger, pH regulation and cancer.Recent Pat Anticancer Drug Discov2013;8:85-99

[96]

Orlowski J.Emerging roles of alkali cation/proton exchangers in organellar homeostasis.Curr Opin Cell Biol2007;19:483-92 PMCID:PMC5021530

[97]

Tamtaji OR,Shamshirian A,Behnam M.New trends in glioma cancer therapy: targeting Na+/H+ exchangers.J Cell Physiol2020;235:658-65

[98]

Chen Q,Zhu XL,Yang H.Increased NHE1 expression is targeted by specific inhibitor cariporide to sensitize resistant breast cancer cells to doxorubicin in vitro and in vivo.BMC Cancer2019;19:211 PMCID:PMC6408845

[99]

Aredia F,Fulda S.Molecular features of the cytotoxicity of an NHE inhibitor: evidence of mitochondrial alterations, ROS overproduction and DNA damage.BMC Cancer2016;16:851 PMCID:PMC5097842

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/