Molecular vulnerabilities and therapeutic resistance in hormone receptor positive and HER2 dependent breast cancer tumours

Ravi Velaga , Sunao Tanaka , Masakazu Toi

Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (2) : 487 -97.

PDF
Cancer Drug Resistance ›› 2022, Vol. 5 ›› Issue (2) :487 -97. DOI: 10.20517/cdr.2022.10
review-article

Molecular vulnerabilities and therapeutic resistance in hormone receptor positive and HER2 dependent breast cancer tumours

Author information +
History +
PDF

Abstract

Over the past two decades, high sensitivity to HER2-amplified primary breast cancers has been achieved with HER2-targeted therapies. CDK4/6 inhibitors have long been identified as a potential treatment option for advanced breast cancer patients. However, acquired HER2 heterogeneity leading to resistance during the treatment has been identified as a bottleneck. This review focuses on the recent resistance mechanisms identified and potential therapeutic targets for conventional and combination endocrine therapies with CDK4/6 inhibitors by various breast cancer clinical trials and research groups in HER amplified and/or mutated breast cancer tumour. Activating HER2 alterations, JNK pathway, hyperactivated TORC1, co-mutations in HER2 and HER3, phenotypic changes of HER2, and few other advanced findings are identified as potential therapeutic targets in treating current HER2 endocrine therapy-resistant tumour. Along with the HER2-focused resistance mechanisms, we also describe how the microbiome may play a role in breast cancer therapy and its potential for new therapeutic strategies to overcome drug resistance in breast cancers.

Keywords

HER2 / CDK4/6 / MONALESSA-2 trial / JNK pathway / HER2 and HER3 co-mutations / microbiome / hot and cold tumour / drug resistance

Cite this article

Download citation ▾
Ravi Velaga, Sunao Tanaka, Masakazu Toi. Molecular vulnerabilities and therapeutic resistance in hormone receptor positive and HER2 dependent breast cancer tumours. Cancer Drug Resistance, 2022, 5(2): 487-97 DOI:10.20517/cdr.2022.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hortobagyi GN,Burris HA.Overall survival with ribociclib plus letrozole in advanced breast cancer.N Engl J Med2022;386:942-50

[2]

Bao KKH,Tse SSW,Chan JCH.The association of ERBB2-low expression with the efficacy of cyclin-dependent kinase 4/6 inhibitor in hormone receptor-positive, ERBB2-negative metastatic breast cancer.JAMA Netw Open2021;4:e2133132 PMCID:PMC8571658

[3]

Hanker AB,Arteaga CL.Overcoming endocrine resistance in breast cancer.Cancer Cell2020;37:496-513 PMCID:PMC7169993

[4]

Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer.J Clin Invest2020;130:5074-87 PMCID:PMC7524491

[5]

Gandhi N.Metabolic reprogramming in breast cancer and its therapeutic implications.Cells2019;8:89 PMCID:PMC6406734

[6]

Januškevičienė I.Heterogeneity of breast cancer: the importance of interaction between different tumor cell populations.Life Sci2019;239:117009

[7]

Hanamura T.Overcoming aromatase inhibitor resistance in breast cancer: possible mechanisms and clinical applications.Breast Cancer2018;25:379-91

[8]

Nagini S.Breast cancer: current molecular therapeutic targets and new players.Anticancer Agents Med Chem2017;17:152-63

[9]

Masuda N,Ohtani S.Adjuvant capecitabine for breast cancer after preoperative chemotherapy.N Engl J Med2017;376:2147-59

[10]

Paik S,Tang G.A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.N Engl J Med2004;351:2817-26

[11]

van 't Veer LJ,van de Vijver MJ.Gene expression profiling predicts clinical outcome of breast cancer.Nature2002;415:530-6

[12]

Parker JS,Cheang MC.Supervised risk predictor of breast cancer based on intrinsic subtypes.J Clin Oncol2009;27:1160-7 PMCID:PMC2667820

[13]

Nayar U,Kapstad C.Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies.Nat Genet2019;51:207-16

[14]

Khan QJ,Bardia A.Letrozole + ribociclib versus letrozole + placebo as neoadjuvant therapy for ER+ breast cancer (FELINE trial).JCO2020;38:505-505

[15]

Griffiths JI,Cosgrove PA.Serial single-cell genomics reveals convergent subclonal evolution of resistance as early-stage breast cancer patients progress on endocrine plus CDK4/6 therapy.Nat Cancer2021;2:658-71 PMCID:PMC8547038

[16]

Wu RC,Yi P.Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways.Mol Cell2004;15:937-49

[17]

Lee H.Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation.Mol Cell Biol2002;22:5835-45 PMCID:PMC133965

[18]

Bose R,Searleman AC.Activating HER2 mutations in HER2 gene amplification negative breast cancer.Cancer Discov2013;3:224-37 PMCID:PMC3570596

[19]

Ma CX,Gao F.Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer.Clin Cancer Res2017;23:5687-95 PMCID:PMC6746403

[20]

Smyth L,Piha-paul S.Update on the phase II SUMMIT trial: neratinib + fulvestrant for HER2-mutant, HR-positive, metastatic breast cancer.Annals of Oncology2019;30:iii10-1

[21]

Sudhan DR,Won H.Hyperactivation of TORC1 drives resistance to the pan-HER tyrosine kinase inhibitor neratinib in HER2-mutant cancers.Cancer Cell2020;37:183-199.e5 PMCID:PMC7301608

[22]

Hyman DM,Won H.HER kinase inhibition in patients with HER2- and HER3-mutant cancers.Nature2018;554:189-94 PMCID:PMC5808581

[23]

Hanker AB,Meiler J.Co-occurring gain-of-function mutations in HER2 and HER3 modulate HER2/HER3 activation, oncogenesis, and HER2 inhibitor sensitivity.Cancer Cell2021;39:1099-1114.e8 PMCID:PMC8355076

[24]

Denkert C,Schneeweiss A.Clinical and molecular characteristics of HER2-low-positive breast cancer: pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials.The Lancet Oncology2021;22:1151-61

[25]

Miglietta F,Bottosso M.Evolution of HER2-low expression from primary to recurrent breast cancer.NPJ Breast Cancer2021;7:137 PMCID:PMC8511010

[26]

Razavi P,Xu G.The genomic landscape of endocrine-resistant advanced breast cancers.Cancer Cell2018;34:427-438.e6 PMCID:PMC6327853

[27]

Griffith OL,Anurag M.The prognostic effects of somatic mutations in ER-positive breast cancer.Nat Commun2018;9:3476 PMCID:PMC6123466

[28]

Mendes-Pereira AM,Dexter T.Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen.Proc Natl Acad Sci U S A2012;109:2730-5 PMCID:PMC3286962

[29]

Copeland NG.Deciphering the genetic landscape of cancer-from genes to pathways.Trends Genet2009;25:455-62

[30]

Kandoth C,Vandin F.Mutational landscape and significance across 12 major cancer types.Nature2013;502:333-9 PMCID:PMC3927368

[31]

Vogelstein B,Velculescu VE,Diaz LA Jr.Cancer genome landscapes.Science2013;339:1546-58 PMCID:PMC3749880

[32]

Gough NR.Focus issue: from genomic mutations to oncogenic pathways.Sci Signal2013;6:eg3

[33]

Calabrese C,Demircioğlu D.PCAWG Transcriptome Core Group, PCAWG Transcriptome Working Group., PCAWG Consortium. Genomic basis for RNA alterations in cancer.Nature2020;578:129-36 PMCID:PMC7054216

[34]

Felsher DW.Oncogene addiction versus oncogene amnesia: perhaps more than just a bad habit?.Cancer Res2008;68:3081-6

[35]

Bradner JE,Young RA.Transcriptional addiction in cancer.Cell2017;168:629-43 PMCID:PMC5308559

[36]

Yamamoto S,Russnes HG.JARID1B is a luminal lineage-driving oncogene in breast cancer.Cancer Cell2014;25:762-77 PMCID:PMC4079039

[37]

Hinohara K,Vigneau S.KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance.Cancer Cell2018;34:939-953.e9 PMCID:PMC6310147

[38]

Hong SP,Lombardo Y.Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy.Nat Commun2019;10:3840 PMCID:PMC6718416

[39]

Ghajar CM,Mori H.The perivascular niche regulates breast tumour dormancy.Nat Cell Biol2013;15:807-17 PMCID:PMC3826912

[40]

Carlson P,Grzelak CA.Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy.Nat Cell Biol2019;21:238-50 PMCID:PMC6948102

[41]

Harper KL,Entenberg D.Mechanism of early dissemination and metastasis in Her2+ mammary cancer.Nature2016;540:588-92 PMCID:PMC5471138

[42]

Hosseini H,Hoffmann M.Early dissemination seeds metastasis in breast cancer.Nature2016;540:552-8 PMCID:PMC5390864

[43]

Yates LR,Wedge D.Genomic evolution of breast cancer metastasis and relapse.Cancer Cell2017;32:169-184.e7 PMCID:PMC5559645

[44]

Suzuki M,Montel V.Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency.Am J Pathol2006;169:673-81 PMCID:PMC1698784

[45]

Zhang C,Elbanna M.Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases.Oncogene2019;38:5905-20 PMCID:PMC6756076

[46]

Sharma P,Wargo JA.Primary, adaptive, and acquired resistance to cancer immunotherapy.Cell2017;168:707-23 PMCID:PMC5391692

[47]

Iida N,Stewart CA.Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment.Science2013;342:967-70 PMCID:PMC6709532

[48]

Daillère R,Waldschmitt N.Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects.Immunity2016;45:931-43

[49]

Sivan A,Hubert N.Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.Science2015;350:1084-9 PMCID:PMC4873287

[50]

Vétizou M,Daillère R.Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.Science2015;350:1079-84 PMCID:PMC4721659

[51]

Gopalakrishnan V,Nezi L.Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.Science2018;359:97-103 PMCID:PMC5827966

[52]

Matson V,Bao R.The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.Science2018;359:104-8 PMCID:PMC6707353

[53]

Routy B,Derosa L.Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.Science2018;359:91-7

[54]

Shui L,Li J,Sun Q.Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy.Front Immunol2019;10:2989 PMCID:PMC6978681

AI Summary AI Mindmap
PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/