PDF
Abstract
In acute myeloid leukemia (AML), a small cell population that contains stem cell features such as lack of differentiation, self-renewal potential, and drug resistance, can be identified. These so-called leukemic stem cells (LSCs) are thought to be responsible for relapse initiation after initial treatment leading to successful eradication of the bulk AML cell population. Since many studies have aimed to characterize and eliminate LSCs to prevent relapse and increase survival rates of patients, LSCs are one of the best characterized cancer stem cells. The specific elimination of LSCs, while sparing the healthy normal hematopoietic stem cells (HSCs), is one of the major challenges in the treatment of leukemia. This review focuses on several surface markers and intracellular transcription factors that can distinguish AML LSCs from HSCs and, therefore, specifically eliminate these stem cell-like leukemic cells. Moreover, previous and ongoing clinical trials of acute leukemia patients treated with therapies targeting these markers are discussed. In contrast to knowledge on LSCs in AML, insight into LSCs in acute lymphoid leukemia (ALL) is limited. This review therefore also addresses the latest insight into LSCs in ALL.
Keywords
Acute myeloid leukemia
/
acute lymphoid leukemia
/
leukemic stem cells
/
targeted therapy
Cite this article
Download citation ▾
Quinty Hansen, Costa Bachas, Linda Smit, Jacqueline Cloos.
Characteristics of leukemic stem cells in acute leukemia and potential targeted therapies for their specific eradication.
Cancer Drug Resistance, 2022, 5(2): 344-67 DOI:10.20517/cdr.2021.140
| [1] |
Hao T,Buck A.An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States.Sci Rep2019;9:12070
|
| [2] |
Shallis RM,Davidoff A,Zeidan AM.Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges.Blood Rev2019;36:70-87
|
| [3] |
Terwilliger T.Acute lymphoblastic leukemia: a comprehensive review and 2017 update.Blood Cancer J2017;7:e577 PMCID:PMC5520400
|
| [4] |
Teachey DT.Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia.Lancet Oncol2019;20:e142-54
|
| [5] |
Deschler B.Acute myeloid leukemia: epidemiology and etiology.Cancer2006;107:2099-107
|
| [6] |
Stein EM.Remission induction in acute myeloid leukemia.Int J Hematol2012;96:164-70 PMCID:PMC4052975
|
| [7] |
Medeiros BC,Daver NG,Pollyea DA.Optimizing survival outcomes with post-remission therapy in acute myeloid leukemia.Am J Hematol2019;94:803-11 PMCID:PMC6593671
|
| [8] |
Roberts KG.Genetics and prognosis of ALL in children vs adults.Hematol Am Soc Hematol Educ Progr2018;2018:137-45 PMCID:PMC6245970
|
| [9] |
Hao T, Van Ha C, Huu Son N, Nhu Hiep P. Long-term outcome of childhood acute myeloid leukemia: a 10-year retrospective cohort study.Pediatr Rep2020;12:8486 PMCID:PMC7160853
|
| [10] |
Pui CH.Acute lymphoblastic leukemia.N Engl J Med1998;339:605-15
|
| [11] |
Lapidot T,Vormoor J.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature1994;367:645-8
|
| [12] |
Bonnet D.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat Med1997;3:730-7
|
| [13] |
Yu Z,Lisanti MP.Cancer stem cells.Int J Biochem Cell Biol2012;44:2144-51 PMCID:PMC3496019
|
| [14] |
Hope KJ,Dick JE.Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity.Nat Immunol2004;5:738-43
|
| [15] |
Ng SW,Kennedy JA.A 17-gene stemness score for rapid determination of risk in acute leukaemia.Nature2016;540:433-7
|
| [16] |
Dick JE.Stem cell concepts renew cancer research.Blood2008;112:4793-807
|
| [17] |
Hanekamp D,Schuurhuis GJ.Leukemic stem cells: identification and clinical application.Int J Hematol2017;105:549-57
|
| [18] |
Gupta PB,Weinberg RA.Cancer stem cells: mirage or reality?.Nat Med2009;15:1010-2
|
| [19] |
Costello RT,Gaugler B.Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities.Cancer Res2000;60:4403-11
|
| [20] |
Zeijlemaker W,Meijer R.CD34+CD38- leukemic stem cell frequency to predict outcome in acute myeloid leukemia.Leukemia2019;33:1102-12
|
| [21] |
Eun K,Kim H.Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting.BMB Rep2017;50:117-25 PMCID:PMC5422023
|
| [22] |
Reya T,Clarke MF.Stem cells, cancer, and cancer stem cells.Nature2001;414:105-11
|
| [23] |
Guzman ML,Upchurch D.Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells.Blood2001;98:2301-7
|
| [24] |
Heidel FH,Armstrong SA.Evolutionarily conserved signaling pathways: acting in the shadows of acute myelogenous leukemia’s genetic diversity.Clin Cancer Res2015;21:240-8
|
| [25] |
Yang X,Wang H.Update of ALDH as a potential biomarker and therapeutic target for AML.Biomed Res Int2018;2018:9192104 PMCID:PMC5817321
|
| [26] |
Kuo YH,Cook GJ.Regain control of p53: targeting leukemia stem cells by isoform-specific HDAC inhibition.Exp Hematol2016;44:315-21 PMCID:PMC4841712
|
| [27] |
Vasconcelos FC,Hancio T,Maia RC.Update on drug transporter proteins in acute myeloid leukemia: pathological implication and clinical setting.Crit Rev Oncol Hematol2021;160:103281
|
| [28] |
Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia.Leukemia2021;36:1-12 PMCID:PMC8727299
|
| [29] |
Najafi M,Majidpoor J.Cancer stem cell (CSC) resistance drivers.Life Sci2019;234:116781
|
| [30] |
Wittwer NL,Marchant C.High CD123 levels enhance proliferation in response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression.Blood Adv2017;1:1067-79 PMCID:PMC5728309
|
| [31] |
Andrews TE,Harki DA.Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery.Drug Deliv Transl Res2013;3:121-42
|
| [32] |
Ding Y,Zhang Q.The biomarkers of leukemia stem cells in acute myeloid leukemia.Stem cell Investig2017;4:19 PMCID:PMC5388677
|
| [33] |
Senft D.A rare subgroup of leukemia stem cells harbors relapse-inducing potential in acute lymphoblastic leukemia.Exp Hematol2019;69:1-10 PMCID:PMC6542675
|
| [34] |
Bernt KM.Leukemia stem cells and human acute lymphoblastic leukemia.Semin Hematol2009;46:33-8 PMCID:PMC4031465
|
| [35] |
van Rhenen A,Kelder A.Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission.Leukemia2007;21:1700-7
|
| [36] |
Jordan CT,Szilvassy SJ.The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells.Leukemia2000;14:1777-84
|
| [37] |
Taussig DC,Simpson C.Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia.Blood2005;106:4086-92 PMCID:PMC1895250
|
| [38] |
Haubner S,Köhnke T.Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML.Leukemia2019;33:64-74 PMCID:PMC6326956
|
| [39] |
Testa U,Militi S.Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis.Blood2002;100:2980-8
|
| [40] |
Cancilla D,DiPersio JF.Targeting CXCR4 in AML and ALL.Front Oncol2020;10:1672 PMCID:PMC7499473
|
| [41] |
Han YC,Piché-Nicholas N.Development of highly optimized antibody-drug conjugates against CD33 and CD123 for acute myeloid leukemia.Clin Cancer Res2021;27:622
|
| [42] |
Yu B.Gemtuzumab ozogamicin and novel antibody-drug conjugates in clinical trials for acute myeloid leukemia.Biomark Res2019;7:24 PMCID:PMC6824118
|
| [43] |
Monney L,Gaglia JL.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.Nature2002;415:536-41
|
| [44] |
Anderson AC,Bregoli L.Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells.Science2007;318:1141
|
| [45] |
Sakuishi K,Sullivan JM.TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer.Oncoimmunology2013;2:e23849 PMCID:PMC3654601
|
| [46] |
Ndhlovu LC,Barbour JD.Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity.Blood2012;119:3734-43 PMCID:PMC3335380
|
| [47] |
Kikushige Y,Takayanagi S.TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells.Cell Stem Cell2010;7:708-17
|
| [48] |
Jan M,Cha AC.Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker.Proc Natl Acad Sci U S A2011;108:5009-14 PMCID:PMC3064328
|
| [49] |
Sakoda T,Harada T.Evaluation of TIM-3-positive LSCs post Allo-SCT is a highly sensitive strategy to predict AML relapses.Blood2019;134:2702
|
| [50] |
Bakker ABH,Bakker AQ.C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia.Cancer Res2004;64:8443-50
|
| [51] |
van Rhenen A,Kelder A.The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells.Blood2007;110:2659-66
|
| [52] |
Wang J,Xiao W.CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.J Hematol Oncol2018;11:1-13 PMCID:PMC5761206
|
| [53] |
Ngai LL,Maguire O.Bimodal expression of potential drug target CLL-1 (CLEC12A) on CD34+ blasts of AML patients.Eur J Haematol2021;107:343-53 PMCID:PMC8457079
|
| [54] |
Zheng B,del Rosario G.An anti-CLL-1 antibody-drug conjugate for the treatment of acute myeloid leukemia.Clin Cancer Res2019;25:1358
|
| [55] |
Narla RK,Wong L.Abstract 4694: The humanized anti-CD47 monclonal antibody, CC-90002, has antitumor activity in vitro and in vivo.Cancer Res2017;77:4694
|
| [56] |
Majeti R,Alizadeh AA.CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells.Cell2009;138:286-99 PMCID:PMC2726837
|
| [57] |
Liu J,Zhao F.Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential.PLoS One2015;10:e0137345 PMCID:PMC4577081
|
| [58] |
Busfield SJ,Wong M.Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC.Leukemia2014;28:2213-21
|
| [59] |
Akiyama T,Maekawa Y.First preclinical report of the efficacy and PD results of KHK2823, a non-Fucosylated fully human monoclonal antibody against IL-3Rα.Blood2015;126:1349-1349
|
| [60] |
Sutherland MK,Lewis TS.Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia.MAbs2009;1:481-90 PMCID:PMC2759498
|
| [61] |
Schürch CM.Therapeutic antibodies for myeloid neoplasms-current developments and future directions.Front Oncol2018;8:1 PMCID:PMC5968093
|
| [62] |
Gramatzki M,Kellner C.CD96 antibody TH-111 eradicates AML-LSC from autografts and the Fc-engineered variant MSH-TH111e may be used in vivo.Biol Blood Marrow Transplant2016;22:S200
|
| [63] |
Chung SS,Hu W.CD99 is a therapeutic target on disease stem cells in myeloid malignancies.Sci Transl Med2017;9:eaaj2025 PMCID:PMC5624309
|
| [64] |
Gadhoum SZ,Abuelela AF.Anti-CD44 antibodies inhibit both mTORC1 and mTORC2: a new rationale supporting CD44-induced AML differentiation therapy.Leukemia2016;30:2397-401 PMCID:PMC5155032
|
| [65] |
Kovtun Y,Adams S.A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells.Blood Adv2018;2:848-58 PMCID:PMC5916008
|
| [66] |
Li F,Yu C.Characterization of SGN-CD123A, a potent CD123-directed antibody-drug conjugate for acute myeloid leukemia.Mol Cancer Ther2018;17:554
|
| [67] |
Gottardi M,Ghelli Luserna Di Rorà A.Gemtuzumab ozogamicin in acute myeloid leukemia: past, present and future.Minerva Med2020;111:395-410
|
| [68] |
Kung Sutherland MS,Jeffrey SC.SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML.Blood2013;122:1455-63
|
| [69] |
Flynn MJ,Zammarchi F.Pre-clinical activity of Adct-301, a novel pyrrolobenzodiazepine (PBD) dimer-containing antibody drug conjugate (ADC) targeting CD25-expressing hematological malignancies.Blood2014;124:4491
|
| [70] |
Flynn MJ,Tyrer PC.ADCT-301, a pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting CD25-expressing hematological malignancies.Mol Cancer Ther2016;15:2709-21
|
| [71] |
Gao C,Schimmer AD,Reilly RM.Auger electron-emitting (111)In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123(+)/CD131(-) phenotype of leukemia stem cells.Appl Radiat Isot2016;110:1-7
|
| [72] |
Jurcic J,Mcdevitt M.Targeted alpha-particle nano-generator Actinium-225 (225Ac)-lintuzumab (anti-CD33) in acute myeloid leukemia (AML).Clin Lymphoma Myeloma Leuk2013;13:S379-80
|
| [73] |
Chichili GR,Li H.A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates.Sci Transl Med2015;7:289ra82
|
| [74] |
Hutmacher C,Rinaldi F.Development of a novel fully-human anti-CD123 antibody to target acute myeloid leukemia.Leuk Res2019;84:106178
|
| [75] |
Krupka C,Kischel R.CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330.Blood2014;123:356-65
|
| [76] |
Subklewe M,Walter RB.Preliminary results from a phase 1 first-in-human study of AMG 673, a novel half-life extended (HLE) anti-CD33/CD3 BiTE® (bispecific T-cell engager) in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML).Blood2019;134:833
|
| [77] |
Leong SR,Hristopoulos M.An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia.Blood2017;129:609-18 PMCID:PMC5290988
|
| [78] |
van Loo PF,Thordardottir S.MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukaemic stem cell antigen, induces T cell-mediated AML blast lysis.Expert Opin Biol Ther2019;19:721-33
|
| [79] |
Boyd-Kirkup J,Brauer P,Chng W-J.HMBD004, a novel anti-CD47xCD33 bispecific antibody displays potent anti-tumor effects in pre-clinical models of AML.Blood2017;130:1378
|
| [80] |
Mardiros A,McDonald T.T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia.Blood2013;122:3138-48 PMCID:PMC3814731
|
| [81] |
Kenderian SS,Shestova O.CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia.Leukemia2015;29:1637-47 PMCID:PMC4644600
|
| [82] |
Casucci M,Falcone L.CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 2013;122:3461-72.
|
| [83] |
Gomes-Silva D,Atilla PA.CD7 CAR T cells for the therapy of acute myeloid leukemia.Mol Ther2019;27:272-80 PMCID:PMC6318703
|
| [84] |
Wiersma VR,Shi C.C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity.MAbs2015;7:321-30 PMCID:PMC4622055
|
| [85] |
Madhumathi J,Verma RS.CD25 targeted therapy of chemotherapy resistant leukemic stem cells using DR5 specific TRAIL peptide.Stem Cell Res2017;19:65-75
|
| [86] |
Benmebarek MR,Herrmann M.A modular and controllable T cell therapy platform for acute myeloid leukemia.Leukemia2021;35:2243-57 PMCID:PMC7789085
|
| [87] |
Liu Y,Zhang J.CD9, a potential leukemia stem cell marker, regulates drug resistance and leukemia development in acute myeloid leukemia.Stem Cell Res Ther2021;12:86 PMCID:PMC7836575
|
| [88] |
Touzet L,Roumier C.CD9 in acute myeloid leukemia: prognostic role and usefulness to target leukemic stem cells.Cancer Med2019;8:1279-88 PMCID:PMC6434215
|
| [89] |
Li H,Li Y.c-MPL is a candidate surface marker and confers self-renewal, quiescence, chemotherapy resistance, and leukemia initiation potential in leukemia stem cells.Stem Cells2018;36:1685-96
|
| [90] |
Yoshihara H,Hosokawa K.Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche.Cell Stem Cell2007;1:685-97
|
| [91] |
Gils N, Denkers F, Smit L. Escape from treatment; the different faces of leukemic stem cells and therapy resistance in acute myeloid leukemia.Front Oncol2021;11:659253 PMCID:PMC8126717
|
| [92] |
Schindler C,Decker T.JAK-STAT signaling: from interferons to cytokines.J Biol Chem2007;282:20059-63
|
| [93] |
Gouilleux-gruart V,Desaint C.STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients.Blood1996;87:1692-7
|
| [94] |
Cook AM,Ho Y.Role of altered growth factor receptor-mediated JAK2 signaling in growth and maintenance of human acute myeloid leukemia stem cells.Blood2014;123:2826-37 PMCID:PMC4007609
|
| [95] |
Reikvam H.Inhibition of NF-κB signaling alters acute myelogenous leukemia cell transcriptomics.Cells2020;9:1677 PMCID:PMC7408594
|
| [96] |
Wang CY,Korneluk RG,Baldwin AS.NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation.Science1998;281:1680
|
| [97] |
Siveen KS,Li F.Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model.Oncotarget2014;5:634-48 PMCID:PMC3996662
|
| [98] |
Ji Q,Sun Y.Antineoplastic effects and mechanisms of micheliolide in acute myelogenous leukemia stem cells.Oncotarget2016;7:40 PMCID:PMC5323134
|
| [99] |
Estruch M,Montesinos TM,Theilgaard-Mönch K.Targeting of PI3K/AKT signaling and DNA damage response in acute myeloid leukemia: a novel therapeutic strategy to boost chemotherapy response and overcome resistance.Cancer Drug Resist2021;4:984-95
|
| [100] |
Takebe N,Harris PJ.Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update.Nat Rev Clin Oncol2015;12:445-64 PMCID:PMC4520755
|
| [101] |
Kim SD,Hur EH.Abstract 4518: Effects of a novel small molecule inhibitor of Wnt signal pathway, CWP232291, on primary tumor cells from patients with malignant hematologic diseases.Cancer Res2011;71:4518
|
| [102] |
Clevers H.Wnt/β-catenin signaling and disease.Cell2012;149:1192-205
|
| [103] |
Simon M,Linch DC.Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia.Oncogene2005;24:2410-20
|
| [104] |
Griffiths EA,Hooker C.Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation.Leuk Lymphoma2010;51:1711-9 PMCID:PMC4000011
|
| [105] |
Wang Y,Sinha AU.The wnt/β-catenin pathway is required for the development of leukemia stem cells in AML.Science2010;327:1650-3 PMCID:PMC3084586
|
| [106] |
Gandillet A,Lassailly F.Heterogeneous sensitivity of human acute myeloid leukemia to β-catenin down-modulation.Leukemia2011;25:770-80 PMCID:PMC4289854
|
| [107] |
Cobas M,Ernst B.Beta-catenin is dispensable for hematopoiesis and lymphopoiesis.J Exp Med2004;199:221-9 PMCID:PMC2211763
|
| [108] |
Lenz HJ.Safely targeting cancer stem cells via selective catenin coactivator antagonism.Cancer Sci2014;105:1087-92 PMCID:PMC4175086
|
| [109] |
Zhang Y.Targeting the Wnt/β-catenin signaling pathway in cancer.J Hematol Oncol2020;13:165 PMCID:PMC7716495
|
| [110] |
Pelullo M,Nardozza F,Screpanti I.Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer.Front Genet2019;10:711 PMCID:PMC6736567
|
| [111] |
Gering M.Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos.Dev Cell2005;8:389-400
|
| [112] |
Gao J,Koch U.Hedgehog signaling is dispensable for adult hematopoietic stem cell function.Cell Stem Cell2009;4:548-58 PMCID:PMC2914688
|
| [113] |
Duncan AW,DiMascio LN.Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance.Nat Immunol2005;6:314-22
|
| [114] |
Mancini SJ,Dumortier A,MacDonald HR.Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation.Blood2005;105:2340-2
|
| [115] |
Maillard I,Dumortier A.Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells.Cell Stem Cell2008;2:356-66 PMCID:PMC3717373
|
| [116] |
Kobune M,Murase K.Drug resistance is dramatically restored by hedgehog inhibitors in CD34+ leukemic cells.Cancer Sci2009;100:948-55
|
| [117] |
Liu N,Ji C.The emerging roles of Notch signaling in leukemia and stem cells.Biomark Res2013;1:23 PMCID:PMC4177577
|
| [118] |
Lobry C,Ndiaye-Lobry D.Notch pathway activation targets AML-initiating cell homeostasis and differentiation.J Exp Med2013;210:301-19 PMCID:PMC3570103
|
| [119] |
Grieselhuber NR,Verdoni AM.Notch signaling in acute promyelocytic leukemia.Leukemia2013;27:1548-57 PMCID:PMC3872828
|
| [120] |
Kode A,Mosialou I.Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts.Nature2014;506:240-4 PMCID:PMC4116754
|
| [121] |
Kang YA,Passegué E.Deregulated Notch and Wnt signaling activates early-stage myeloid regeneration pathways in leukemia.J Exp Med2020;217:e20190787 PMCID:PMC7062512
|
| [122] |
Canales T, de Leeuw DC, Vermue E, Ossenkoppele GJ, Smit L. Specific depletion of leukemic stem cells: can microRNAs make the difference?.Cancers (Basel)2017;9:74 PMCID:PMC5532610
|
| [123] |
Balaian L,Ball ED.Abstract 3338: pacritinib reduces human myeloid leukemia stem cell maintance in a defined niche.Cancer Res2016;76:3338
|
| [124] |
Shastri A,Teixeira M.Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells.J Clin Invest2018;128:5479-88 PMCID:PMC6264739
|
| [125] |
Wilde L,Palmisiano N.OPB-111077 in combination with decitabine and venetoclax for the treatment of acute myeloid leukemia.Blood2019;134:2597
|
| [126] |
Zhang Q,Duttagupta P.Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia.Blood2016;127:1687-700 PMCID:PMC4817311
|
| [127] |
Wingelhofer B,Heyes EC.Pharmacologic inhibition of STAT5 in acute myeloid leukemia.Leukemia2018;32:1135-46 PMCID:PMC5940656
|
| [128] |
Jiang X,Mu H.Disruption of wnt/b-catenin exerts antileukemia activity and synergizes with flt3 inhibition in flt3-mutant acute myeloid leukemia.Clin Cancer Res2018;24:2417-29
|
| [129] |
Benoit YD,Risueño RM.Sam68 allows selective targeting of human cancer stem cells.Cell Chem Biol2017;24:833-44.e9
|
| [130] |
Fiskus W,Saha S.Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells.Leukemia2015;29:1267-78 PMCID:PMC4456205
|
| [131] |
Fong CY,Lam EY.BET inhibitor resistance emerges from leukaemia stem cells.Nature2015;525:538-42 PMCID:PMC6069604
|
| [132] |
Ye Q,Zhan G.Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia.Sci Rep2016;6:26510 PMCID:PMC4876435
|
| [133] |
Dongdong Z,Yang T.Antiproliferative and immunoregulatory effects of azelaic acid against acute myeloid leukemia via the activation of notch signaling pathway.Front Pharmacol2019;10:1396 PMCID:PMC6901913
|
| [134] |
Arenas A,del Castillo C.Inhibition of the hedgehog pathway decreases the quiescent CD34+CD38- population in acute myeloid leukemia.Blood2018;132:1509
|
| [135] |
Fukushima N,Kakiuchi S.Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells.Cancer Sci2016;107:1422-9 PMCID:PMC5084664
|
| [136] |
Li X,Zhu Q.Gli-1/PI3K/AKT/NF-kB pathway mediates resistance to radiation and is a target for reversion of responses in refractory acute myeloid leukemia cells.Oncotarget2016;7:33004-15 PMCID:PMC5078070
|
| [137] |
Lim Y,Li L.Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia.Sci Transl Med2015;7:291ra96 PMCID:PMC4644635
|
| [138] |
Long B,Zheng FM.Targeting GLI1 suppresses cell growth and enhances chemosensitivity in CD34+ enriched acute myeloid leukemia progenitor cells.Cell Physiol Biochem2016;38:1288-302
|
| [139] |
Strair RK,Schaar D.Nuclear factor-κB modulation in patients undergoing induction chemotherapy for acute myelogenous leukemia.Clin Cancer Res2008;14:7564
|
| [140] |
Zhou L,McQueen T.HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML.Leukemia2013;27:1358-68 PMCID:PMC3892989
|
| [141] |
Novotny-Diermayr V,Goh KC.The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML.Blood Cancer J2012;2:e69 PMCID:PMC3366067
|
| [142] |
Li Y,Zhou Y.A new strategy to target acute myeloid leukemia stem and progenitor cells using chidamide, a histone deacetylase inhibitor.Curr Cancer Drug Targets2015;15:493-503
|
| [143] |
Yang W,Hou R.Disulfiram/cytarabine eradicates a subset of acute myeloid leukemia stem cells with high aldehyde dehydrogenase expression.Leuk Res2020;92:106351
|
| [144] |
Venton G,Baier C.Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors.Blood Cancer J2016;6:e469 PMCID:PMC5056970
|
| [145] |
Tavor S,Jacob-Hirsch J.The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation.Leukemia2008;22:2151-5158
|
| [146] |
Abraham M,Bulvik B.The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression.Leukemia2017;31:2336-46
|
| [147] |
Zeng Z,Samudio IJ.Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML.Blood2009;113:6215-24 PMCID:PMC2699240
|
| [148] |
Kuhne MR,Belanger B.BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies.Clin Cancer Res2013;19:357
|
| [149] |
Cox CV,Oakhill A,Goulden NJ.Characterization of acute lymphoblastic leukemia progenitor cells.Blood2004;104:2919-25
|
| [150] |
Cox CV,Evely RS,Blair A.Expression of CD133 on leukemia-initiating cells in childhood ALL.Blood2009;113:3287-96
|
| [151] |
Handgretinger R.CD133-positive hematopoietic stem cells: from biology to medicine.Adv Exp Med Biol2013;777:99-111
|
| [152] |
Hong D,Ancliff P.Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia.Science2008;319:336
|
| [153] |
Kong Y,Saito Y.CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL.Leukemia2008;22:1207-13
|
| [154] |
le Viseur C,Bomken S.In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties.Cancer Cell2008;14:47-58 PMCID:PMC2572185
|
| [155] |
Bardini M,Corral L.Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement.Leukemia2015;29:38-50
|
| [156] |
Wojcik B,Rieger MA.On the hunt for B-cell lymphoblastic leukemia-initiating stem cells.Oncotarget2017;8:108286-7 PMCID:PMC5752442
|
| [157] |
Lang F,Bothur S.Plastic CD34 and CD38 expression in adult B-cell precursor acute lymphoblastic leukemia explains ambiguity of leukemia-initiating stem cell populations.Leukemia2017;31:731-4 PMCID:PMC5339428
|
| [158] |
Elder A,Wilson I.Abundant and equipotent founder cells establish and maintain acute lymphoblastic leukaemia.Leukemia2017;31:2577-86 PMCID:PMC5558874
|
| [159] |
Cox CV,Kearns PR,Evely RS.Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia.Blood2007;109:674-82
|
| [160] |
Janeway CAJ.The co-receptor function of CD4.Semin Immunol1991;3:153-60
|
| [161] |
Gerby B,Armstrong F.Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations.Leukemia2011;25:1249-58
|
| [162] |
Chiu PP,Dick JE.Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance.Blood2010;116:5268-79
|
| [163] |
Piovan E,Tosello V.Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia.Cancer Cell2013;24:766-76 PMCID:PMC3878658
|
| [164] |
González-García S,Fuentes P.IL-7R is essential for leukemia-initiating cell activity of T-cell acute lymphoblastic leukemia.Blood2019;134:2171-82 PMCID:PMC6933515
|
| [165] |
Yang J,Advani A.A phase 1b study of vadastuximab talirine as maintenance and in combination with standard consolidation for patients with acute myeloid leukemia (AML).Blood2016;128:340
|
| [166] |
Brierley CK,Roberts C.The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia.Transfusion2019;59:2248-54
|
| [167] |
Kantarjian H,Gökbuget N.Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia.N Engl J Med2017;376:836-47 PMCID:PMC5881572
|
| [168] |
Jabbour E,Jain N.Impact of Philadelphia chromosome-like alterations on efficacy and safety of blinatumomab in adults with relapsed/refractory acute lymphoblastic leukemia: A post hoc analysis from the phase 3 TOWER study.Am J Hematol2021;96:E379-83
|
| [169] |
Advani AS,O’Dwyer KM.SWOG 1318: a phase II trial of blinatumomab followed by POMP maintenance in older patients with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia.J Clin Oncol2022;
|
| [170] |
Maude SL,Buechner J.Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia.N Engl J Med2018;378:439-48 PMCID:PMC5996391
|
| [171] |
Ortíz-Maldonado V,Castellà M.CART19-BE-01: a multicenter trial of ARI-0001 cell therapy in patients with CD19 + relapsed/refractory malignancies.Mol Ther2021;29:636-44 PMCID:PMC7854276
|
| [172] |
Eghtedar A,Estrov Z.Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia.Blood2012;119:4614-8 PMCID:PMC4081383
|
| [173] |
Lee JH,Pagel JM.Phase 1 study of CWP232291 in patients with relapsed or refractory acute myeloid leukemia and myelodysplastic syndrome.Blood Adv2020;4:2032-43 PMCID:PMC7218422
|
| [174] |
Jeon JY,Buelow DR.Preclinical activity and a pilot phase I study of pacritinib, an oral JAK2/FLT3 inhibitor, and chemotherapy in FLT3-ITD-positive AML.Invest New Drugs2020;38:340-9 PMCID:PMC6858927
|
| [175] |
Heuser M,Fiedler W.Clinical benefit of glasdegib plus low-dose cytarabine in patients with de novo and secondary acute myeloid leukemia: long-term analysis of a phase II randomized trial.Ann Hematol2021;100:1181-94 PMCID:PMC8043884
|
| [176] |
Tibes R,Dueck A.Phase I/IB study of Azacitidine and Hedgehog pathway inhibition with Sonidegib (LDE225) in myeloid malignancies.Blood2017;130:2629
|
| [177] |
Zhou HS,Andreeff M.Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang.Cancer Biol Med2016;13:248-59 PMCID:PMC4944541
|
| [178] |
Cox CV,Kearns PR,Evely RS.Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia.Blood2007;109:674-82
|
| [179] |
Zeijlemaker W,Cloos J.Immunophenotypic detection of measurable residual (Stem Cell) disease using LAIP approach in acute myeloid leukemia.Curr Protoc Cytom2019;91:e66 PMCID:PMC6856793
|
| [180] |
Ngai LL,Janssen JJWM,Cloos J.MRD tailored therapy in AML: what we have learned so far.Front Oncol2021;10:603636 PMCID:PMC7871983
|
| [181] |
Yanagisawa B,Smith BD.Translating leukemia stem cells into the clinical setting: harmonizing the heterogeneity.Exp Hematol2016;44:1130-7 PMCID:PMC5110366
|