Jun 2024, Volume 44 Issue 6
    

  • Select all
  • REVIEW
    Yijia Tang, Guangzu Cui, Haicong Liu, Ying Han, Changjing Cai, Ziyang Feng, Hong Shen, Shan Zeng
    2024, 44(6): 601-636. https://doi.org/10.1002/cac2.12546
    PDF

    Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called “cold” tumors which are unresponsive to immunotherapy, and the opposite are “hot” tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of “cold” tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming “cold” tumors into “hot” tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in “cold” tumor.

  • REVIEW
    Min Zhao, Wen Shuai, Zehao Su, Ping Xu, Aoxue Wang, Qiu Sun, Guan Wang
    2024, 44(6): 637-653. https://doi.org/10.1002/cac2.12548
    PDF

    Background: Tyrosine phosphorylation of intracellular proteins is a post-translational modification that plays a regulatory role in signal transduction during cellular events. Dephosphorylation of signal transduction proteins caused by protein tyrosine phosphatases (PTPs) contributed their role as a convergent node to mediate cross-talk between signaling pathways. In the context of cancer, PTP-mediated pathways have been identified as signaling hubs that enabled cancer cells to mitigate stress induced by clinical therapy. This is achieved by the promotion of constitutive activation of growth-stimulatory signaling pathways or modulation of the immune-suppressive tumor microenvironment. Preclinical evidences suggested that anticancer drugs will release their greatest therapeutic potency when combined with PTP inhibitors, reversing drug resistance that was responsible for clinical failures during cancer therapy.

    Areas covered: This review aimed to elaborate recent insights that supported the involvement of PTP-mediated pathways in the development of resistance to targeted therapy and immune-checkpoint therapy.

    Expert opinion: This review proposed the notion of PTP inhibition in anticancer combination therapy as a potential strategy in clinic to achieve long-term tumor regression. Ongoing clinical trials are currently underway to assess the safety and efficacy of combination therapy in advanced-stage tumors.

  • ORIGINAL ARTICLE
    Chunyan Lan, Huaiwu Lu, Lin Zhou, Kunlun Liao, Junxiu Liu, Zhiwen Xie, Haixi Liang, Guorong Zou, Ting Yang, Qin Xu, Xin Huang
    2024, 44(6): 654-669. https://doi.org/10.1002/cac2.12547
    PDF

    Background: Camrelizumab plus apatinib have demonstrated robust antitumor activity and safety in patients with advanced cervical cancer (CLAP study; NCT03816553). We herein present the updated long-term results of the CLAP study and explore potential biomarkers for survival. The outcomes of patients who underwent immune checkpoint inhibitor (ICI) retreatment were also reported.

    Methods: In this phase II trial, eligible patients received camrelizumab 200 mg intravenously every two weeks and apatinib 250 mg orally once daily in 4-week cycles for up to two years. Treatment was continued until disease progression, unacceptable toxicity, or withdrawal of consent.

    Results: Between January 21 and August 1, 2019, a total of 45 patients were enrolled. Data were analyzed as of July 31, 2023, representing > 48 months since treatment initiation for all patients. Nine (20.0%) patients completed the 2-year study. The median duration of response (DOR) was 16.6 months, and 45.0% of patients achieved a DOR of ≥ 24 months. The 12-month progression-free survival (PFS) rate was 40.7% (95% confidence interval [CI], 25.2-55.6), with an 18-month PFS rate of 37.8% (95% CI, 22.7-52.8). The median overall survival (OS) was 20.3 months (95% CI, 9.3-36.9), and the 24-month OS rate was 47.8% (95% CI, 31.7-62.3). Age > 50 years, programmed death-ligand 1 (PD-L1) combined positive score (CPS) ≥ 1 (versus [vs.] < 1), CPS ≥ 10 (vs. < 1), high tumor mutational burden, and PIK3CA mutations were associated with improved PFS (hazard ratio [HR] < 1) and longer OS (HR < 1). Eight patients who initially responded in the CLAP trial but later experienced disease progression were retreated with ICIs. Among them, 2 (25.0%) achieved a partial response, while 5 (62.5%) had stable disease. Notably, four patients who received retreatment with ICIs survived for more than 45 months. No new safety signals were identified in the present study.

    Conclusion: Long-term survival follow-up data demonstrated that camrelizumab plus apatinib has robust, sustained, and durable efficacy in patients with advanced cervical cancer who progress after first-line platinum-based chemotherapy. No new safety signals were noted with long-term treatment.

  • ORIGINAL ARTICLE
    Xin-Yu Zhang, Jian-Bo Shi, Shu-Fang Jin, Rui-Jie Wang, Ming-Yu Li, Zhi-Yuan Zhang, Xi Yang, Hai-Long Ma
    2024, 44(6): 670-694. https://doi.org/10.1002/cac2.12545
    PDF

    Background: Metabolic reprograming and immune escape are two hallmarks of cancer. However, how metabolic disorders drive immune escape in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, the aim of the present study was to investigate the metabolic landscape of HNSCC and its mechanism of driving immune escape.

    Methods: Analysis of paired tumor tissues and adjacent normal tissues from 69 HNSCC patients was performed using liquid/gas chromatography-mass spectrometry and RNA-sequencing. The tumor-promoting function of kynurenine (Kyn) was explored in vitro and in vivo. The downstream target of Kyn was investigated in CD8+ T cells. The regulation of CD8+ T cells was investigated after Siglec-15 overexpression in vivo. An engineering nanoparticle was established to deliver Siglec-15 small interfering RNA (siS15), and its association with immunotherapy response were investigated. The association between Siglec-15 and CD8+ programmed cell death 1 (PD-1)+ T cells was analyzed in a HNSCC patient cohort.

    Results: A total of 178 metabolites showed significant dysregulation in HNSCC, including carbohydrates, lipids and lipid-like molecules, and amino acids. Among these, amino acid metabolism was the most significantly altered, especially Kyn, which promoted tumor proliferation and metastasis. In addition, most immune checkpoint molecules were upregulated in Kyn-high patients based on RNA-sequencing. Furthermore, tumor-derived Kyn was transferred into CD8+ T cells and induced T cell functional exhaustion, and blocking Kyn transporters restored its killing activity. Accroding to the results, mechanistically, Kyn transcriptionally regulated the expression of Siglec-15 via aryl hydrocarbon receptor (AhR), and overexpression of Siglec-15 promoted immune escape by suppressing T cell infiltration and activation. Targeting AhR in vivo reduced Kyn-mediated Siglec-15 expression and promoted intratumoral CD8+ T cell infiltration and killing capacity. Finally, a NH2-modified mesoporous silica nanoparticle was designed to deliver siS15, which restored CD8+ T cell function status and enhanced anti-PD-1 efficacy in tumor-bearing immunocompetent mice. Clinically, Siglec-15 was positively correlated with AhR expression and CD8+PD-1+ T cell infiltration in HNSCC tissues.

    Conclusions: The findings describe the metabolic landscape of HNSCC comprehensively and reveal that the Kyn/Siglec-15 axis may be a novel potential immunometabolism mechanism, providing a promising therapeutic strategy for cancers.

  • LETTER TO THE JOURNAL
    Anna Gustafsson, Emma Jonasson, Anders Ståhlberg, Göran Landberg
    2024, 44(6): 695-699. https://doi.org/10.1002/cac2.12542
    PDF
  • LETTER TO THE JOURNAL
    Zhichao Tong, Yubo Zhao, Shiyu Bai, Benedikt Ebner, Lou Lienhard, Yuling Zhao, Ziqi Wang, Qi Pan, Pengyu Guo, Thilo Bracht, Barbara Sitek, Jürgen E. Gschwend, Wanhai Xu, Roman Nawroth
    2024, 44(6): 700-704. https://doi.org/10.1002/cac2.12532
    PDF
  • LETTER TO THE JOURNAL
    Jinkwon Lee, Gyeonghwa Kim, Tae-Su Han, Eunsun Jung, Taesang Son, Kwangho Kim, Kiyoon Kwon, Yuna Roh, Tae Young Ryu, In Hwan Tae, Yunsang Kang, Byungheon Lee, Yu Rim Lee, Soo Young Park, Won Young Tak, Dae-Soo Kim, Mi-Young Son, Keun Hur, Hyun-Soo Cho
    2024, 44(6): 705-709. https://doi.org/10.1002/cac2.12536
    PDF