Coordinated gene expression within sustained STAT3-associated chromatin conformations contributes to hepatocellular carcinoma progression

Sunyoung Jang , Sumin Yoon , Hyeokjun Yang , Nayun Choi , Su-Hyang Han , Lark Kyun Kim , Hyoung-Pyo Kim , Jong Hoon Park , Daeyoup Lee , Kyung Hyun Yoo

Cancer Communications ›› 2025, Vol. 45 ›› Issue (10) : 1309 -1333.

PDF
Cancer Communications ›› 2025, Vol. 45 ›› Issue (10) : 1309 -1333. DOI: 10.1002/cac2.70049
ORIGINAL ARTICLE

Coordinated gene expression within sustained STAT3-associated chromatin conformations contributes to hepatocellular carcinoma progression

Author information +
History +
PDF

Abstract

Background: Phosphorylated signal transducer and activator of transcription 3 (p-STAT3) has emerged as a critical modulator of hepatocellular carcinoma (HCC) progression. However, its role in three-dimensional (3D) chromatin conformation and the expression of genes linked to HCC aggressiveness remains largely unexplored. This study aimed to identify HCC 3D chromatin conformations that are regulated by sustained STAT3 activation and validate the molecular mechanisms underlying the aggressiveness of HCC.

Methods: Comparative analyses were performed using HCC cell lines with varying levels of STAT3 activation. Chromatin immunoprecipitation-sequencing (ChIP-seq) for p-STAT3 and H3K27ac was conducted to map p-STAT3-associated genomic regions and assess its influence on chromatin states. Chromatin conformation sequencings (high-throughput chromosome conformation capture and high-throughput chromosome conformation capture followed by immunoprecipitation) were employed to investigate the 3D genome landscape and identify conformational changes linked to sustained p-STAT3 activation. RNA-sequencing was performed to assess transcriptional changes in response to these chromatin rearrangements. Functional assays, including invasion and tube formation assays, were carried out to validate the phenotypic impact of p-STAT3 activation on HCC progressiveness. Pharmacological inhibition of STAT3 was tested to explore potential therapeutic avenues and resistance mechanisms.

Results: We found that sustained activation of p-STAT3 was significantly associated with poor prognostic outcomes in HCC patients. ChIP-seq demonstrated that p-STAT3 regulated chromatin interactions, leading to the formation of frequently interacting regions (FIREs), stable structural units within the 3D genome. Genes within these p-STAT3-associated FIREs exhibited coordinated expression, with many involved in aggressiveness HCC phenotypes like invasion and tube formation. Chromatin conformation data indicated that these FIREs altered topologically associating domains (TADs), potentially influencing broader chromatin organization. Despite STAT3 inhibition, p-STAT3-associated chromatin conformations remained intact, maintaining the expression of genes within FIREs and contributing to drug resistance.

Conclusions: Sustained p-STAT3 activation significantly alters the 3D chromatin conformation in HCC, particularly through the formation of FIREs. These p-STAT3-associated FIREs drive the expression of genes involved in HCC aggressiveness and remain active despite STAT3-targeted treatments, suggesting a mechanism of drug resistance. These findings highlight the potential of targeting 3D chromatin dynamics as a therapeutic strategy in HCC, especially in cases of STAT3 inhibitor resistance.

Keywords

STAT3 / Chromatin conformation / Hepatocellular carcinoma / Cancer aggressiveness

Cite this article

Download citation ▾
Sunyoung Jang, Sumin Yoon, Hyeokjun Yang, Nayun Choi, Su-Hyang Han, Lark Kyun Kim, Hyoung-Pyo Kim, Jong Hoon Park, Daeyoup Lee, Kyung Hyun Yoo. Coordinated gene expression within sustained STAT3-associated chromatin conformations contributes to hepatocellular carcinoma progression. Cancer Communications, 2025, 45(10): 1309-1333 DOI:10.1002/cac2.70049

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brar G, Greten TF, Graubard BI, McNeel TS, Petrick JL, McGlynn KA, et al. Hepatocellular Carcinoma Survival by Etiology: A SEER-Medicare Database Analysis. Hepatol Commun. 2020; 4(10): 1541-51.

[2]

Tsilimigras DI, Bagante F, Moris D, Hyer JM, Sahara K, Paredes AZ, et al. Recurrence Patterns and Outcomes after Resection of Hepatocellular Carcinoma within and beyond the Barcelona Clinic Liver Cancer Criteria. Ann Surg Oncol. 2020; 27(7): 2321-31.

[3]

Shah SA, Cleary SP, Wei AC, Yang I, Taylor BR, Hemming AW, et al. Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes. Surgery. 2007; 141(3): 330-9.

[4]

Ladd AD, Duarte S, Sahin I, Zarrinpar A. Mechanisms of drug resistance in HCC. Hepatology. 2024; 79(4): 926-40.

[5]

Niu ZS, Niu XJ, Wang WH. Genetic alterations in hepatocellular carcinoma: An update. World J Gastroenterol. 2016; 22(41): 9069-95.

[6]

Khemlina G, Ikeda S, Kurzrock R. The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer. 2017; 16(1): 149.

[7]

Muller M, Bird TG, Nault JC. The landscape of gene mutations in cirrhosis and hepatocellular carcinoma. J Hepatol. 2020; 72(5): 990-1002.

[8]

Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat Oncol. 2016; 3(1): 57-9.

[9]

Jing F, Li X, Jiang H, Sun J, Guo Q. Combating drug resistance in hepatocellular carcinoma: No awareness today, no action tomorrow. Biomed Pharmacother. 2023; 167: 115561.

[10]

Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020; 5(1): 87.

[11]

Nguyen PHD, Wasser M, Tan CT, Lim CJ, Lai HLH, Seow JJW, et al. Trajectory of immune evasion and cancer progression in hepatocellular carcinoma. Nat Commun. 2022; 13(1): 1441.

[12]

Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, et al. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett. 2023; 28(1): 33.

[13]

Lee C, Cheung ST. STAT3: An Emerging Therapeutic Target for Hepatocellular Carcinoma. Cancers (Basel). 2019; 11(11): 1646.

[14]

Singh S, Gomez HJ, Thakkar S, Singh SP, Parihar AS. Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. International Journal of Molecular Sciences. 2023; 24(5): 4722.

[15]

Xu J, Lin H, Wu G, Zhu M, Li M. IL-6/STAT3 Is a Promising Therapeutic Target for Hepatocellular Carcinoma. Front Oncol. 2021; 11: 760971.

[16]

Zheng X, Xu M, Yao B, Wang C, Jia Y, Liu Q. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal. 2016; 28(9): 1314-24.

[17]

Kao JT, Feng CL, Yu CJ, Tsai SM, Hsu PN, Chen YL, et al. IL-6, through p-STAT3 rather than p-STAT1, activates hepatocarcinogenesis and affects survival of hepatocellular carcinoma patients: a cohort study. BMC Gastroenterol. 2015; 15: 50.

[18]

Xu G, Zhu L, Wang Y, Shi Y, Gong A, Wu C. Stattic Enhances Radiosensitivity and Reduces Radio-Induced Migration and Invasion in HCC Cell Lines through an Apoptosis Pathway. Biomed Res Int. 2017; 2017: 1832494.

[19]

Bi YH, Han WQ, Li RF, Wang YJ, Du ZS, Wang XJ, et al. Signal transducer and activator of transcription 3 promotes the Warburg effect possibly by inducing pyruvate kinase M2 phosphorylation in liver precancerous lesions. World J Gastroenterol. 2019; 25(16): 1936-49.

[20]

Yu S, Chen J, Quan M, Li L, Li Y, Gao Y. CD63 negatively regulates hepatocellular carcinoma development through suppression of inflammatory cytokine-induced STAT3 activation. J Cell Mol Med. 2021; 25(2): 1024-34.

[21]

Xie L, Zeng Y, Dai Z, He W, Ke H, Lin Q, et al. Chemical and genetic inhibition of STAT3 sensitizes hepatocellular carcinoma cells to sorafenib induced cell death. Int J Biol Sci. 2018; 14(5): 577-85.

[22]

Lin L, Amin R, Gallicano GI, Glasgow E, Jogunoori W, Jessup JM, et al. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. Oncogene. 2009; 28(7): 961-72.

[23]

Chiablaem K, Lirdprapamongkol K, Keeratichamroen S, Surarit R, Svasti J. Curcumin suppresses vasculogenic mimicry capacity of hepatocellular carcinoma cells through STAT3 and PI3K/AKT inhibition. Anticancer Res. 2014; 34(4): 1857-64.

[24]

Li Y, Han Q, Zhao H, Guo Q, Zhang J. Napabucasin Reduces Cancer Stem Cell Characteristics in Hepatocellular Carcinoma. Front Pharmacol. 2020; 11: 597520.

[25]

Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008; 359(4): 378-90.

[26]

Gu FM, Li QL, Gao Q, Jiang JH, Huang XY, Pan JF, et al. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3. World J Gastroenterol. 2011; 17(34): 3922-32.

[27]

Rosmorduc O, Desbois-Mouthon C. Targeting STAT3 in hepatocellular carcinoma: sorafenib again. J Hepatol. 2011; 55(5): 957-9.

[28]

Liu J, Dang H, Wang XW. The significance of intertumor and intratumor heterogeneity in liver cancer. Exp Mol Med. 2018; 50(1): e416.

[29]

Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, et al. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol. 2018; 10: 1758835918816287.

[30]

Lee TK, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022; 19(1): 26-44.

[31]

Sas Z, Cendrowicz E, Weinhäuser I, Rygiel TP. Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J Mol Sci. 2022; 23(7): 3778.

[32]

Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol. 2011; 21(1): 35-43.

[33]

Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, et al. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel). 2021; 13(13): 3325.

[34]

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012; 485(7398): 376-80.

[35]

Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016; 15(9): 2038-49.

[36]

Valton AL, Dekker J. TAD disruption as oncogenic driver. Curr Opin Genet Dev. 2016; 36: 34-40.

[37]

Li L, Barth NKH, Pilarsky C, Taher L. Cancer Is Associated with Alterations in the Three-Dimensional Organization of the Genome. Cancers (Basel). 2019; 11(12): 1886.

[38]

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal. 2011; 17(1): 3.

[39]

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4): 357-9.

[40]

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38(4): 576-89.

[41]

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011; 29(1): 24-6.

[42]

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12(1): 323.

[43]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550.

[44]

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43): 15545-50.

[45]

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3): 267-73.

[46]

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9(9): R137.

[47]

Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015; 16: 259.

[48]

Wolff J, Rabbani L, Gilsbach R, Richard G, Manke T, Backofen R, et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 2020; 48(W1): W177-W84.

[49]

Hua D, Gu M, Zhang X, Du Y, Xie H, Qi L, et al. DiffDomain enables identification of structurally reorganized topologically associating domains. Nat Commun. 2024; 15(1): 502.

[50]

Cresswell KG, Dozmorov MG. TADCompare: An R Package for Differential and Temporal Analysis of Topologically Associated Domains. Front Genet. 2020; 11: 158.

[51]

van der Weide RH, van den Brand T, Haarhuis JHI, Teunissen H, Rowland BD, de Wit E. Hi-C analyses with GENOVA: a case study with cohesin variants. NAR Genom Bioinform. 2021; 3(2): lqab040.

[52]

Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 2016; 3(1): 95-8.

[53]

Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 2016; 3(1): 99-101.

[54]

Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun. 2022; 13(1): 4594.

[55]

Chen CH, Zheng R, Tokheim C, Dong X, Fan J, Wan C, et al. Determinants of transcription factor regulatory range. Nat Commun. 2020; 11(1): 2472.

[56]

Heintzman ND, Ren B. Finding distal regulatory elements in the human genome. Curr Opin Genet Dev. 2009; 19(6): 541-9.

[57]

Cohen AJ, Saiakhova A, Corradin O, Luppino JM, Lovrenert K, Bartels CF, et al. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nat Commun. 2017; 8: 14400.

[58]

Dinh TA, Sritharan R, Smith FD, Francisco AB, Ma RK, Bunaciu RP, et al. Hotspots of Aberrant Enhancer Activity in Fibrolamellar Carcinoma Reveal Candidate Oncogenic Pathways and Therapeutic Vulnerabilities. Cell Rep. 2020; 31(2): 107509.

[59]

Liu Q, Guo L, Lou Z, Xiang X, Shao J. Super-enhancers and novel therapeutic targets in colorectal cancer. Cell Death Dis. 2022; 13(3): 228.

[60]

Jia Q, Chen S, Tan Y, Li Y, Tang F. Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms. Exp Mol Med. 2020; 52(5): 713-23.

[61]

Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature. 2015; 523(7559): 240-4.

[62]

Gong Y, Lazaris C, Sakellaropoulos T, Lozano A, Kambadur P, Ntziachristos P, et al. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Nat Commun. 2018; 9(1): 542.

[63]

Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, et al. Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell. 2017; 169(5): 930-44. e22.

[64]

Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 2008; 451(7180): 796-801.

[65]

Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell. 2008; 132(3): 422-33.

[66]

Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN, et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat Genet. 2019; 51(9): 1380-8.

[67]

Wang J, Yu H, Ma Q, Zeng P, Wu D, Hou Y, et al. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell. 2021; 28(10): 1868-83. e11.

[68]

Wang W, Guo Y, Zhong J, Wang Q, Wang X, Wei H, et al. The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma. Sci Rep. 2021; 11(1): 2415.

[69]

Unal E, Idilman IS, Akata D, Ozmen MN, Karcaaltincaba M. Microvascular invasion in hepatocellular carcinoma. Diagn Interv Radiol. 2016; 22(2): 125-32.

[70]

Dalbeni A, Natola LA, Garbin M, Zoncape M, Cattazzo F, Mantovani A, et al. Interleukin-6: A New Marker of Advanced-Sarcopenic HCC Cirrhotic Patients. Cancers (Basel). 2023; 15(9): 2406.

[71]

Shao YY, Lin H, Li YS, Lee YH, Chen HM, Cheng AL, et al. High plasma interleukin-6 levels associated with poor prognosis of patients with advanced hepatocellular carcinoma. Jpn J Clin Oncol. 2017; 47(10): 949-53.

[72]

Shakiba E, Ramezani M, Sadeghi M. Evaluation of serum interleukin-6 levels in hepatocellular carcinoma patients: a systematic review and meta-analysis. Clin Exp Hepatol. 2018; 4(3): 182-90.

[73]

Kundu G, Ghasemi M, Yim S, Rohil A, Xin C, Ren L, et al. STAT3 Protein-Protein Interaction Analysis Finds P300 as a Regulator of STAT3 and Histone 3 Lysine 27 Acetylation in Pericytes. Biomedicines. 2024; 12(9): 2102.

[74]

Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, et al. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther. 2023; 8(1): 420.

[75]

Wen X, Wang H, Chai P, Fan J, Zhang X, Ding T, et al. An Artificial CTCF Peptide Triggers Efficient Therapeutic Efficacy in Ocular Melanoma. Mol Ther Oncolytics. 2020; 18: 317-25.

[76]

Elias M, Gani S, Lerner Y, Yamin K, Tor C, Patel A, et al. Developing a peptide to disrupt cohesin head domain interactions. iScience. 2023; 26(9): 107498.

[77]

Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci. 2021; 22(13): 6788.

RIGHTS & PERMISSIONS

2025 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd. on behalf of Sun Yat-sen University Cancer Center.

AI Summary AI Mindmap
PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/