Journal home Browse Most accessed

Most accessed

  • Select all
  • REVIEW
    Yijia Tang, Guangzu Cui, Haicong Liu, Ying Han, Changjing Cai, Ziyang Feng, Hong Shen, Shan Zeng
    Cancer Communications, 2024, 44(6): 601-636. https://doi.org/10.1002/cac2.12546
    PDF

    Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called “cold” tumors which are unresponsive to immunotherapy, and the opposite are “hot” tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of “cold” tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming “cold” tumors into “hot” tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in “cold” tumor.

  • ORIGINAL ARTICLE
    Xin-Yu Zhang, Jian-Bo Shi, Shu-Fang Jin, Rui-Jie Wang, Ming-Yu Li, Zhi-Yuan Zhang, Xi Yang, Hai-Long Ma
    Cancer Communications, 2024, 44(6): 670-694. https://doi.org/10.1002/cac2.12545
    PDF

    Background: Metabolic reprograming and immune escape are two hallmarks of cancer. However, how metabolic disorders drive immune escape in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, the aim of the present study was to investigate the metabolic landscape of HNSCC and its mechanism of driving immune escape.

    Methods: Analysis of paired tumor tissues and adjacent normal tissues from 69 HNSCC patients was performed using liquid/gas chromatography-mass spectrometry and RNA-sequencing. The tumor-promoting function of kynurenine (Kyn) was explored in vitro and in vivo. The downstream target of Kyn was investigated in CD8+ T cells. The regulation of CD8+ T cells was investigated after Siglec-15 overexpression in vivo. An engineering nanoparticle was established to deliver Siglec-15 small interfering RNA (siS15), and its association with immunotherapy response were investigated. The association between Siglec-15 and CD8+ programmed cell death 1 (PD-1)+ T cells was analyzed in a HNSCC patient cohort.

    Results: A total of 178 metabolites showed significant dysregulation in HNSCC, including carbohydrates, lipids and lipid-like molecules, and amino acids. Among these, amino acid metabolism was the most significantly altered, especially Kyn, which promoted tumor proliferation and metastasis. In addition, most immune checkpoint molecules were upregulated in Kyn-high patients based on RNA-sequencing. Furthermore, tumor-derived Kyn was transferred into CD8+ T cells and induced T cell functional exhaustion, and blocking Kyn transporters restored its killing activity. Accroding to the results, mechanistically, Kyn transcriptionally regulated the expression of Siglec-15 via aryl hydrocarbon receptor (AhR), and overexpression of Siglec-15 promoted immune escape by suppressing T cell infiltration and activation. Targeting AhR in vivo reduced Kyn-mediated Siglec-15 expression and promoted intratumoral CD8+ T cell infiltration and killing capacity. Finally, a NH2-modified mesoporous silica nanoparticle was designed to deliver siS15, which restored CD8+ T cell function status and enhanced anti-PD-1 efficacy in tumor-bearing immunocompetent mice. Clinically, Siglec-15 was positively correlated with AhR expression and CD8+PD-1+ T cell infiltration in HNSCC tissues.

    Conclusions: The findings describe the metabolic landscape of HNSCC comprehensively and reveal that the Kyn/Siglec-15 axis may be a novel potential immunometabolism mechanism, providing a promising therapeutic strategy for cancers.

  • ORIGINAL ARTICLE
    Chunyan Lan, Huaiwu Lu, Lin Zhou, Kunlun Liao, Junxiu Liu, Zhiwen Xie, Haixi Liang, Guorong Zou, Ting Yang, Qin Xu, Xin Huang
    Cancer Communications, 2024, 44(6): 654-669. https://doi.org/10.1002/cac2.12547
    PDF

    Background: Camrelizumab plus apatinib have demonstrated robust antitumor activity and safety in patients with advanced cervical cancer (CLAP study; NCT03816553). We herein present the updated long-term results of the CLAP study and explore potential biomarkers for survival. The outcomes of patients who underwent immune checkpoint inhibitor (ICI) retreatment were also reported.

    Methods: In this phase II trial, eligible patients received camrelizumab 200 mg intravenously every two weeks and apatinib 250 mg orally once daily in 4-week cycles for up to two years. Treatment was continued until disease progression, unacceptable toxicity, or withdrawal of consent.

    Results: Between January 21 and August 1, 2019, a total of 45 patients were enrolled. Data were analyzed as of July 31, 2023, representing > 48 months since treatment initiation for all patients. Nine (20.0%) patients completed the 2-year study. The median duration of response (DOR) was 16.6 months, and 45.0% of patients achieved a DOR of ≥ 24 months. The 12-month progression-free survival (PFS) rate was 40.7% (95% confidence interval [CI], 25.2-55.6), with an 18-month PFS rate of 37.8% (95% CI, 22.7-52.8). The median overall survival (OS) was 20.3 months (95% CI, 9.3-36.9), and the 24-month OS rate was 47.8% (95% CI, 31.7-62.3). Age > 50 years, programmed death-ligand 1 (PD-L1) combined positive score (CPS) ≥ 1 (versus [vs.] < 1), CPS ≥ 10 (vs. < 1), high tumor mutational burden, and PIK3CA mutations were associated with improved PFS (hazard ratio [HR] < 1) and longer OS (HR < 1). Eight patients who initially responded in the CLAP trial but later experienced disease progression were retreated with ICIs. Among them, 2 (25.0%) achieved a partial response, while 5 (62.5%) had stable disease. Notably, four patients who received retreatment with ICIs survived for more than 45 months. No new safety signals were identified in the present study.

    Conclusion: Long-term survival follow-up data demonstrated that camrelizumab plus apatinib has robust, sustained, and durable efficacy in patients with advanced cervical cancer who progress after first-line platinum-based chemotherapy. No new safety signals were noted with long-term treatment.

  • ORIGINAL ARTICLE
    Jing Zheng, Tao Wang, Yunpeng Yang, Jie Huang, Jifeng Feng, Wu Zhuang, Jianhua Chen, Jun Zhao, Wei Zhong, Yanqiu Zhao, Yiping Zhang, Yong Song, Yi Hu, Zhuang Yu, Youling Gong, Yuan Chen, Feng Ye, Shucai Zhang, Lejie Cao, Yun Fan, Gang Wu, Yubiao Guo, Chengzhi Zhou, Kewei Ma, Jian Fang, Weineng Feng, Yunpeng Liu, Zhendong Zheng, Gaofeng Li, Huijie Wang, Shundong Cang, Ning Wu, Wei Song, Xiaoqing Liu, Shijun Zhao, Lieming Ding, Giovanni Selvaggi, Yang Wang, Shanshan Xiao, Qian Wang, Zhilin Shen, Jianya Zhou, Jianying Zhou, Li Zhang
    Cancer Communications, 2024, 44(4): 455-468. https://doi.org/10.1002/cac2.12524
    PDF

    Background: The initial phase II stuty (NCT03215693) demonstrated that ensartinib has shown clinical activity in patients with advanced crizotinib-refractory, anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). Herein, we reported the updated data on overall survival (OS) and molecular profiling from the initial phase II study.

    Methods: In this study, 180 patients received 225 mg of ensartinib orally once daily until disease progression, death or withdrawal. OS was estimated by Kaplan‒Meier methods with two-sided 95% confidence intervals (CIs). Next-generation sequencing was employed to explore prognostic biomarkers based on plasma samples collected at baseline and after initiating ensartinib. Circulating tumor DNA (ctDNA) was detected to dynamically monitor the genomic alternations during treatment and indicate the existence of molecular residual disease, facilitating improvement of clinical management.

    Results: At the data cut-off date (August 31, 2022), with a median follow-up time of 53.2 months, 97 of 180 (53.9%) patients had died. The median OS was 42.8 months (95% CI: 29.3-53.2 months). A total of 333 plasma samples from 168 patients were included for ctDNA analysis. An inferior OS correlated significantly with baseline ALK or tumor protein 53 (TP53) mutation. In addition, patients with concurrent TP53 mutations had shorter OS than those without concurrent TP53 mutations. High ctDNA levels evaluated by variant allele frequency (VAF) and haploid genome equivalents per milliliter of plasma (hGE/mL) at baseline were associated with poor OS. Additionally, patients with ctDNA clearance at 6 weeks and slow ascent growth had dramatically longer OS than those with ctDNA residual and fast ascent growth, respectively. Furthermore, patients who had a lower tumor burden, as evaluated by the diameter of target lesions, had a longer OS. Multivariate Cox regression analysis further uncovered the independent prognostic values of bone metastases, higher hGE, and elevated ALK mutation abundance at 6 weeks.

    Conclusion: Ensartinib led to a favorable OS in patients with advanced, crizotinib-resistant, and ALK-positive NSCLC. Quantification of ctDNA levels also provided valuable prognostic information for risk stratification.

  • ORIGINAL ARTICLE
    Monika Raab, Izabela Kostova, Samuel Peña-Llopis, Daniela Fietz, Monika Kressin, Seyed Mohsen Aberoumandi, Evelyn Ullrich, Sven Becker, Mourad Sanhaji, Klaus Strebhardt
    Cancer Communications, 2024, 44(1): 101-126. https://doi.org/10.1002/cac2.12511
    PDF

    Background: The cellular tumor protein p53 (TP53) is a tumor suppressor gene that is frequently mutated in human cancers. Among various cancer types, the very aggressive high-grade serous ovarian carcinoma (HGSOC) exhibits the highest prevalence of TP53 mutations, present in >96% of cases. Despite intensive efforts to reactivate p53, no clinical drug has been approved to rescue p53 function. In this study, our primary objective was to administer in vitro-transcribed (IVT) wild-type (WT) p53-mRNA to HGSOC cell lines, primary cells, and orthotopic mouse models, with the aim of exploring its impact on inhibiting tumor growth and dissemination, both in vitro and in vivo.

    Methods: To restore the activity of p53, WT p53 was exogenously expressed in HGSOC cell lines using a mammalian vector system. Moreover, IVT WT p53 mRNA was delivered into different HGSOC model systems (primary cells and patient-derived organoids) using liposomes and studied for proliferation, cell cycle progression, apoptosis, colony formation, and chromosomal instability. Transcriptomic alterations induced by p53 mRNA were analyzed using RNA sequencing in OVCAR-8 and primary HGSOC cells, followed by ingenuity pathway analysis. In vivo effects on tumor growth and metastasis were studied using orthotopic xenografts and metastatic intraperitoneal mouse models.

    Results: Reactivation of the TP53 tumor suppressor gene was explored in different HGSOC model systems using newly designed IVT mRNA-based methods. The introduction of WT p53 mRNA triggered dose-dependent apoptosis, cell cycle arrest, and potent long-lasting inhibition of HGSOC cell proliferation. Transcriptome analysis of OVCAR-8 cells upon mRNA-based p53 reactivation revealed significant alterations in gene expression related to p53 signaling, such as apoptosis, cell cycle regulation, and DNA damage. Restoring p53 function concurrently reduces chromosomal instability within the HGSOC cells, underscoring its crucial contribution in safeguarding genomic integrity by moderating the baseline occurrence of double-strand breaks arising from replication stress. Furthermore, in various mouse models, treatment with p53 mRNA reduced tumor growth and inhibited tumor cell dissemination in the peritoneal cavity in a dose-dependent manner.

    Conclusions: The IVT mRNA-based reactivation of p53 holds promise as a potential therapeutic strategy for HGSOC, providing valuable insights into the molecular mechanisms underlying p53 function and its relevance in ovarian cancer treatment.

  • GUIDELINES
    Feng-Hua Wang, Xiao-Tian Zhang, Lei Tang, Qi Wu, Mu-Yan Cai, Yuan-Fang Li, Xiu-Juan Qu, Hong Qiu, Yu-Jing Zhang, Jie-Er Ying, Jun Zhang, Ling-Yu Sun, Rong-Bo Lin, Chang Wang, Hao Liu, Miao-Zhen Qiu, Wen-Long Guan, Sheng-Xiang Rao, Jia-Fu Ji, Yan Xin, Wei-Qi Sheng, Hui-Mian Xu, Zhi-Wei Zhou, Ai-Ping Zhou, Jing Jin, Xiang-Lin Yuan, Feng Bi, Tian-Shu Liu, Han Liang, Yan-Qiao Zhang, Guo-Xin Li, Jun Liang, Bao-Rui Liu, Lin Shen, Jin Li, Rui-Hua Xu
    Cancer Communications, 2024, 44(1): 127-172. https://doi.org/10.1002/cac2.12516
    PDF

    The 2023 update of the Chinese Society of Clinical Oncology (CSCO) Clinical Guidelines for Gastric Cancer focuses on standardizing cancer diagnosis and treatment in China, reflecting the latest advancements in evidence-based medicine, healthcare resource availability, and precision medicine. These updates address the differences in epidemiological characteristics, clinicopathological features, tumor biology, treatment patterns, and drug selections between Eastern and Western gastric cancer patients. Key revisions include a structured template for imaging diagnosis reports, updated standards for molecular marker testing in pathological diagnosis, and an elevated recommendation for neoadjuvant chemotherapy in stage III gastric cancer. For advanced metastatic gastric cancer, the guidelines introduce new recommendations for immunotherapy, anti-angiogenic therapy and targeted drugs, along with updated management strategies for human epidermal growth factor receptor 2 (HER2)-positive and deficient DNA mismatch repair (dMMR)/microsatellite instability-high (MSI-H) patients. Additionally, the guidelines offer detailed screening recommendations for hereditary gastric cancer and an appendix listing drug treatment regimens for various stages of gastric cancer. The 2023 CSCO Clinical Guidelines for Gastric Cancer updates are based on both Chinese and international clinical research and expert consensus to enhance their applicability and relevance in clinical practice, particularly in the heterogeneous healthcare landscape of China, while maintaining a commitment to scientific rigor, impartiality, and timely revisions.

  • ORIGINAL ARTICLE
    Ji Eon Kim, So-Young Park, Chulhwan Kwak, Yoonji Lee, Dae-Geun Song, Jae Woo Jung, Haesong Lee, Eun-Ae Shin, Yangie Pinanga, Kyung-hee Pyo, Eun Hae Lee, Wonsik Kim, Soyeon Kim, Chang-Duck Jun, Jeanho Yun, Sun Choi, Hyun-Woo Rhee, Kwang-Hyeon Liu, Jung Weon Lee
    Cancer Communications, 2024, 44(1): 47-75. https://doi.org/10.1002/cac2.12510
    PDF

    Background: Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms.

    Methods: Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc.

    Results: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and β-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy.

    Conclusions: Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.

  • LETTER TO THE EDITOR
    Tiantian Guo, Yue Zhou, Fei Liang, Zezhou Wang, Vincent Bourbonne, Lukas Käsmann, Nora Sundahl, Abraham Jing-Ching Wu, Jianjiao Ni, Zhengfei Zhu
    Cancer Communications, 2024, 44(2): 278-281. https://doi.org/10.1002/cac2.12512
    PDF
  • ORIGINAL ARTICLE
    Daojia Miao, Jian Shi, Qingyang Lv, Diaoyi Tan, Chuanyi Zhao, Zhiyong Xiong, Xiaoping Zhang
    Cancer Communications, 2024, 44(3): 361-383. https://doi.org/10.1002/cac2.12523
    PDF

    Background: Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention.

    Methods: ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses.

    Results: We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors.

    Conclusions: These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.

  • LETTER TO THE JOURNAL
    Andrés Pastor-Fernández, Manuel Montero Gómez de las Heras, Jose Ignacio Escrig-Larena, Marta Barradas, Cristina Pantoja, Adrian Plaza, Jose Luis Lopez-Aceituno, Esther Durán, Alejo Efeyan, Maria Mittelbrunn, Lola Martinez, Pablo Jose Fernandez-Marcos
    Cancer Communications, 2024, 44(4): 508-513. https://doi.org/10.1002/cac2.12535
    PDF
  • LETTER TO THE JOURNAL
    Jian-Rong Li, Chao Cheng
    Cancer Communications, 2024, 44(5): 589-592. https://doi.org/10.1002/cac2.12540
    PDF
  • REVIEW
    Min Zhao, Wen Shuai, Zehao Su, Ping Xu, Aoxue Wang, Qiu Sun, Guan Wang
    Cancer Communications, 2024, 44(6): 637-653. https://doi.org/10.1002/cac2.12548
    PDF

    Background: Tyrosine phosphorylation of intracellular proteins is a post-translational modification that plays a regulatory role in signal transduction during cellular events. Dephosphorylation of signal transduction proteins caused by protein tyrosine phosphatases (PTPs) contributed their role as a convergent node to mediate cross-talk between signaling pathways. In the context of cancer, PTP-mediated pathways have been identified as signaling hubs that enabled cancer cells to mitigate stress induced by clinical therapy. This is achieved by the promotion of constitutive activation of growth-stimulatory signaling pathways or modulation of the immune-suppressive tumor microenvironment. Preclinical evidences suggested that anticancer drugs will release their greatest therapeutic potency when combined with PTP inhibitors, reversing drug resistance that was responsible for clinical failures during cancer therapy.

    Areas covered: This review aimed to elaborate recent insights that supported the involvement of PTP-mediated pathways in the development of resistance to targeted therapy and immune-checkpoint therapy.

    Expert opinion: This review proposed the notion of PTP inhibition in anticancer combination therapy as a potential strategy in clinic to achieve long-term tumor regression. Ongoing clinical trials are currently underway to assess the safety and efficacy of combination therapy in advanced-stage tumors.

  • ORIGINAL ARTICLE
    Yue Yao, Yi Xu, Liang Yu, Ting-Mao Xue, Zhi-Jie Xiao, Pui-Chi Tin, Hiu-Ling Fung, Hoi-Tang Ma, Jing-Ping Yun, Judy Wai Ping Yam
    Cancer Communications, 2024, 44(2): 251-272. https://doi.org/10.1002/cac2.12515
    PDF

    Background: Small extracellular vesicles (sEVs) mediate intercellular communication that contributes to hepatocellular carcinoma (HCC) progression via multifaceted pathways. The success of cell entry determines the effect of sEV on recipient cells. Here, we aimed to delineate the mechanisms underlying the uptake of sEV in HCC.

    Methods: Macropinocytosis was examined by the ability of cells to internalize dextran and sEV. Macropinocytosis was analyzed in Na(+)/H(+) exchanger 7 (NHE7)-knockdown and -overexpressing cells. The properties of cells were studied using functional assays. pH biosensor was used to evaluate the intracellular and endosomal pH. The expression of NHE7 in patients’ liver tissues was examined by immunofluorescent staining. Inducible silencing of NHE7 in established tumors was performed to reveal the therapeutic potential of targeting NHE7.

    Results: The data revealed that macropinocytosis controlled the internalization of sEVs and their oncogenic effect on recipient cells. It was found that metastatic HCC cells exhibited the highest efficiency of sEV uptake relative to normal liver cells and non-metastatic HCC cells. Attenuation of macropinocytic activity by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) limited the entry of sEVs and compromised cell aggressiveness. Mechanistically, we delineated that high level of NHE7, a sodium-hydrogen exchanger, alkalized intracellular pH and acidized endosomal pH, leading to the maturation of macropinosomes. Inducible inhibition of NHE7 in established tumors developed in mice delayed tumor development and suppressed lung metastasis. Clinically, NHE7 expression was upregulated and linked to dismal prognosis of HCC.

    Conclusions: This study advances the understanding that NHE7 enhances sEV uptake by macropinocytosis to promote the malignant properties of HCC cells. Inhibition of sEV uptake via macropinocytosis can be exploited as a treatment alone or in combination with conventional therapeutic approaches for HCC.

  • LETTER TO THE JOURNAL
    Jinkwon Lee, Gyeonghwa Kim, Tae-Su Han, Eunsun Jung, Taesang Son, Kwangho Kim, Kiyoon Kwon, Yuna Roh, Tae Young Ryu, In Hwan Tae, Yunsang Kang, Byungheon Lee, Yu Rim Lee, Soo Young Park, Won Young Tak, Dae-Soo Kim, Mi-Young Son, Keun Hur, Hyun-Soo Cho
    Cancer Communications, 2024, 44(6): 705-709. https://doi.org/10.1002/cac2.12536
    PDF
  • LETTER TO THE JOURNAL
    Anna Gustafsson, Emma Jonasson, Anders Ståhlberg, Göran Landberg
    Cancer Communications, 2024, 44(6): 695-699. https://doi.org/10.1002/cac2.12542
    PDF
  • REVIEW
    Bin Song, Ping Yang, Shuyu Zhang
    Cancer Communications, 2024, 44(3): 297-360. https://doi.org/10.1002/cac2.12520
    PDF

    Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.

  • REVIEW
    Gholam-Reza Khosravi, Samaneh Mostafavi, Sanaz Bastan, Narges Ebrahimi, Roya Safari Gharibvand, Nahid Eskandari
    Cancer Communications, 2024, 44(5): 521-553. https://doi.org/10.1002/cac2.12539
    PDF

    Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.

  • LETTER TO THE EDITOR
    Kouya Shiraishi, Atsushi Takahashi, Yukihide Momozawa, Yataro Daigo, Syuzo Kaneko, Takahisa Kawaguchi, Hideo Kunitoh, Shingo Matsumoto, Hidehito Horinouchi, Akiteru Goto, Takayuki Honda, Kimihiro Shimizu, Masahiro Torasawa, Daisuke Takayanagi, Motonobu Saito, Akira Saito, Yuichiro Ohe, Shun-ichi Watanabe, Koichi Goto, Masahiro Tsuboi, Katsuya Tsuchihara, Sadaaki Takata, Tomomi Aoi, Atsushi Takano, Masashi Kobayashi, Yohei Miyagi, Kazumi Tanaka, Hiroyuki Suzuki, Daichi Maeda, Takumi Yamaura, Maiko Matsuda, Yoko Shimada, Takaaki Mizuno, Hiromi Sakamoto, Teruhiko Yoshida, Yasushi Goto, Tatsuya Yoshida, Taiki Yamaji, Makoto Sonobe, Shinichi Toyooka, Kazue Yoneda, Katsuhiro Masago, Fumihiro Tanaka, Megumi Hara, Nobuo Fuse, Satoshi S. Nishizuka, Noriko Motoi, Norie Sawada, Yuichiro Nishida, Kazuki Kumada, Kenji Takeuchi, Kozo Tanno, Yasushi Yatabe, Kuniko Sunami, Tomoyuki Hishida, Yasunari Miyazaki, Hidemi Ito, Mitsuhiro Amemiya, Hirohiko Totsuka, Haruhiko Nakayama, Tomoyuki Yokose, Kazuyoshi Ishigaki, Toshiteru Nagashima, Yoichi Ohtaki, Kazuhiro Imai, Ken Takasawa, Yoshihiro Minamiya, Kazuma Kobayashi, Kenichi Okubo, Kenji Wakai, Atsushi Shimizu, Masayuki Yamamoto, Motoki Iwasaki, Koichi Matsuda, Johji Inazawa, Yuichi Shiraishi, Hiroyoshi Nishikawa, Yoshinori Murakami, Michiaki Kubo, Fumihiko Matsuda, Yoichiro Kamatani, Ryuji Hamamoto, Keitaro Matsuo, Takashi Kohno
    Cancer Communications, 2024, 44(2): 287-293. https://doi.org/10.1002/cac2.12498
    PDF
  • REVIEW
    Ming-Kun Chen, Zi-Xian Chen, Mao-Ping Cai, Hong Chen, Zhuang-Fei Chen, Shan-Chao Zhao
    Cancer Communications, 2024, 44(2): 205-225. https://doi.org/10.1002/cac2.12518
    PDF

    Targeted delivery of anti-tumor drugs and overcoming drug resistance in malignant tumor cells remain significant clinical challenges. However, there are only few effective methods to address these issues. Extracellular vesicles (EVs), actively secreted by cells, play a crucial role in intercellular information transmission and cargo transportation. Recent studies have demonstrated that engineered EVs can serve as drug delivery carriers and showed promising application prospects. Nevertheless, there is an urgent need for further improvements in the isolation and purification of EVs, surface modification techniques, drug assembly processes, and precise recognition of tumor cells for targeted drug delivery purposes. In this review, we summarize the applications of engineered EVs in cancer treatment and overcoming drug resistance, and current challenges associated with engineered EVs are also discussed. This review aims to provide new insights and potential directions for utilizing engineered EVs as targeted delivery systems for anti-tumor drugs and overcoming drug resistance in the near future.

  • REVIEW
    Xianjie Jiang, Qiu Peng, Mingjing Peng, Linda Oyang, Honghan Wang, Qiang Liu, Xuemeng Xu, Nayiyuan Wu, Shiming Tan, Wenjuan Yang, Yaqian Han, Jinguan Lin, Longzheng Xia, Yanyan Tang, Xia Luo, Jie Dai, Yujuan Zhou, Qianjin Liao
    Cancer Communications, 2024, 44(2): 185-204. https://doi.org/10.1002/cac2.12519
    PDF

    Cellular metabolism is the fundamental process by which cells maintain growth and self-renewal. It produces energy, furnishes raw materials, and intermediates for biomolecule synthesis, and modulates enzyme activity to sustain normal cellular functions. Cellular metabolism is the foundation of cellular life processes and plays a regulatory role in various biological functions, including programmed cell death. Ferroptosis is a recently discovered form of iron-dependent programmed cell death. The inhibition of ferroptosis plays a crucial role in tumorigenesis and tumor progression. However, the role of cellular metabolism, particularly glucose and amino acid metabolism, in cancer ferroptosis is not well understood. Here, we reviewed glucose, lipid, amino acid, iron and selenium metabolism involvement in cancer cell ferroptosis to elucidate the impact of different metabolic pathways on this process. Additionally, we provided a detailed overview of agents used to induce cancer ferroptosis. We explained that the metabolism of tumor cells plays a crucial role in maintaining intracellular redox homeostasis and that disrupting the normal metabolic processes in these cells renders them more susceptible to iron-induced cell death, resulting in enhanced tumor cell killing. The combination of ferroptosis inducers and cellular metabolism inhibitors may be a novel approach to future cancer therapy and an important strategy to advance the development of treatments.

  • ORIGINAL ARTICLE
    Weiren Liu, Huqiang Wang, Qianfu Zhao, Chenyang Tao, Weifeng Qu, Yushan Hou, Run Huang, Zimei Sun, Guiqi Zhu, Xifei Jiang, Yuan Fang, Jun Gao, Xiaoling Wu, Zhixiang Yang, Rongyu Ping, Jiafeng Chen, Rui Yang, Tianhao Chu, Jian Zhou, Jia Fan, Zheng Tang, Dong Yang, Yinghong Shi
    Cancer Communications, 2024, 44(2): 226-250. https://doi.org/10.1002/cac2.12513
    PDF

    Background: Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and lethal hepatobiliary tumor with few therapeutic strategies. The metabolic reprogramming of tumor cells plays an essential role in the development of tumors, while the metabolic molecular classification of iCCA is largely unknown. Here, we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients, hoping to provide a novel perspective to understand and treat iCCA.

    Methods: We performed integrated multiomics analysis in 116 iCCA samples, including whole-exome sequencing, bulk RNA-sequencing and proteome analysis. Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models, the metabolic subtype of iCCA was determined. Survival and prognostic gene analyses were used to compare overall survival (OS) differences between metabolic subtypes. Cell proliferation analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in iCCA cells.

    Results: Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of iCCA were identified. These metabolic subtypes presented with distinct prognoses, metabolic features, immune microenvironments, and genetic alterations. The S2 subtype with the worst survival showed the activation of some special metabolic processes, immune-suppressed microenvironment and Kirsten rat sarcoma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A) mutations. Among the S2 subtype-specific upregulated proteins, DGKA was further identified as a potential drug target for iCCA, which promoted cell proliferation by enhancing phosphatidic acid (PA) metabolism and activating mitogen-activated protein kinase (MAPK) signaling.

    Conclusion: Via multiomics analyses, we identified three metabolic subtypes of iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We further identified DGKA as a potential target for the S2 subtype.

  • LETTER TO THE EDITOR
    Keunok Jung, Deok-Han Ko, Jeong-Yun Jang, Young Rong Kim, Jung Yeon Heo, Yong-Sung Kim
    Cancer Communications, 2024, 44(1): 173-177. https://doi.org/10.1002/cac2.12497
    PDF
  • LETTER TO THE JOURNAL
    Debaditya Chakraborty, Elizabeth Gutierrez-Chakraborty, Cristian Rodriguez-Aguayo, Hakan Başağaoğlu, Gabriel Lopez-Berestein, Paola Amero
    Cancer Communications, 2024, 44(5): 584-588. https://doi.org/10.1002/cac2.12530
    PDF
  • NEWS AND VIEWS
    Huiyao Huang, Yiru Hou, Hong Fang, Ling Xu, Yue Yu, Huifang Zhang, Jing Zhang, Yu Tang, Gongtao Lan, Wenbao Zhang, Ning Li
    Cancer Communications, 2024, 44(5): 576-579. https://doi.org/10.1002/cac2.12528
    PDF
  • RESEARCH HIGHLIGHT
    Jiaming Wang, Xuetao Cao
    Cancer Communications, 2024, 44(5): 580-583. https://doi.org/10.1002/cac2.12543
    PDF
  • RESEARCH HIGHLIGHTS
    Chu-Xia Deng
    Cancer Communications, 2024, 44(4): 491-494. https://doi.org/10.1002/cac2.12529
    PDF
  • ORIGINAL ARTICLE
    Shiyu Zhang, Xing Jia, Haojiang Dai, Xingxin Zhu, Wenfeng Song, Suchen Bian, Hao Wu, Shinuo Chen, Yangbo Tang, Junran Chen, Cheng Jin, Mengqiao Zhou, Haiyang Xie, Shusen Zheng, Penghong Song
    Cancer Communications, 2024, 44(3): 384-407. https://doi.org/10.1002/cac2.12527
    PDF

    Background: Liver cancer is a malignancy with high morbidity and mortality rates. Serpin family E member 2 (SERPINE2) has been reported to play a key role in the metastasis of many tumors. In this study, we aimed to investigate the potential mechanism of SERPINE2 in liver cancer metastasis.

    Methods: The Cancer Genome Atlas database (TCGA), including DNA methylation and transcriptome sequencing data, was utilized to identify the crucial oncogene associated with DNA methylation and cancer progression in liver cancer. Data from the TCGA and RNA sequencing for 94 pairs of liver cancer tissues were used to explore the correlation between SERPINE2 expression and clinical parameters of patients. DNA methylation sequencing was used to detect the DNA methylation levels in liver cancer tissues and cells. RNA sequencing, cytokine assays, immunoprecipitation (IP) and mass spectrometry (MS) assays, protein stability assays, and ubiquitination assays were performed to explore the regulatory mechanism of SERPINE2 in liver cancer metastasis. Patient-derived xenografts and tumor organoid models were established to determine the role of SERPINE2 in the treatment of liver cancer using sorafenib.

    Results: Based on the public database screening, SERPINE2 was identified as a tumor promoter regulated by DNA methylation. SERPINE2 expression was significantly higher in liver cancer tissues and was associated with the dismal prognosis in patients with liver cancer. SERPINE2 promoted liver cancer metastasis by enhancing cell pseudopodia formation, cell adhesion, cancer-associated fibroblast activation, extracellular matrix remodeling, and angiogenesis. IP/MS assays confirmed that SERPINE2 activated epidermal growth factor receptor (EGFR) and its downstream signaling pathways by interacting with EGFR. Mechanistically, SERPINE2 inhibited EGFR ubiquitination and maintained its protein stability by competing with the E3 ubiquitin ligase, c-Cbl. Additionally, EGFR was activated in liver cancer cells after sorafenib treatment, and SERPINE2 knockdown-induced EGFR downregulation significantly enhanced the therapeutic efficacy of sorafenib against liver cancer. Furthermore, we found that SERPINE2 knockdown also had a sensitizing effect on lenvatinib treatment.

    Conclusions: SERPINE2 promoted liver cancer metastasis by preventing EGFR degradation via c-Cbl-mediated ubiquitination, suggesting that inhibition of the SERPINE2-EGFR axis may be a potential target for liver cancer treatment.

  • ORIGINAL ARTICLE
    Lu Tang, Huan Zhang, Fen Zhou, Qiuzhe Wei, Mengyi Du, Jianghua Wu, Chenggong Li, Wenjing Luo, Jie Zhou, Xindi Wang, Zhaozhao Chen, Yinqiang Zhang, Zhongpei Huang, Zhuolin Wu, Yuxi Wen, Huiwen Jiang, Danying Liao, Haiming Kou, Wei Xiong, Heng Mei, Yu Hu
    Cancer Communications, 2024, 44(3): 408-432. https://doi.org/10.1002/cac2.12525
    PDF

    Background: Chimeric antigen receptor T (CAR-T) therapy has substantially revolutionized the clinical outcomes of patients with hematologic malignancies, but the cancer-intrinsic mechanisms underlying resistance to CAR-T cells remain yet to be fully understood. This study aims to explore the molecular determinants of cancer cell sensitivity to CAR-T cell-mediated killing and to provide a better understanding of the underlying mechanisms and potential modulation to improve clinical efficacy.

    Methods: The human whole-genome CRISPR/Cas9-based knockout screening was conducted to identify key genes that enable cancer cells to evade CD19 CAR-T-cell-mediated killing. The in vitro cytotoxicity assays and evaluation of tumor tissue and bone marrow specimens were further conducted to confirm the role of the key genes in cancer cell susceptibility to CAR-T cells. In addition, the specific mechanisms influencing CAR-T cell-mediated cancer clearance were elucidated in mouse and cellular models.

    Results: The CRISPR/Cas9-based knockout screening showed that the enrichment of autophagy-related genes (ATG3, BECN1, and RB1CC1) provided protection of cancer cells from CD19 CAR-T cell-mediated cytotoxicity. These findings were further validated by in vitro cytotoxicity assays in cells with genetic and pharmacological inhibition of autophagy. Notably, higher expression of the three autophagy-related proteins in tumor samples was correlated with poorer responsiveness and worse survival in patients with relapsed/refractory B-cell lymphoma after CD19 CAR-T therapy. Bulk RNA sequencing analysis of bone marrow samples from B-cell leukemia patients also suggested the clinical relevance of autophagy to the therapeutic response and relapse after CD19 CAR-T cell therapy. Pharmacological inhibition of autophagy and knockout of RB1CC1 could dramatically sensitize tumor cells to CD19 CAR-T cell-mediated killing in mouse models of both B-cell leukemia and lymphoma. Moreover, our study revealed that cancer-intrinsic autophagy mediates evasion of CAR-T cells via the TNF-α-TNFR1 axis-mediated apoptosis and STAT1/IRF1-induced chemokine signaling activation.

    Conclusions: These findings confirm that autophagy signaling in B-cell malignancies is essential for the effective cytotoxic function of CAR-T cells and thereby pave the way for the development of autophagy-targeting strategies to improve the clinical efficacy of CAR-T cell immunotherapy.

  • LETTER TO THE EDITOR
    Lucia Chica-Redecillas, Sergio Cuenca-Lopez, Eduardo Andres-Leon, Laura Carmen Terron-Camero, Blanca Cano-Gutierrez, Jose Manuel Cozar, Jose Antonio Lorente, Fernando Vazquez-Alonso, Luis Javier Martinez-Gonzalez, Maria Jesus Alvarez-Cubero
    Cancer Communications, 2024, 44(3): 443-447. https://doi.org/10.1002/cac2.12501
    PDF
  • LETTER TO THE EDITOR
    Jin Wang, Ming-Jia Xi, Qing Lu, Bi-Han Xia, Yu-Zhi Liu, Jin-Lin Yang
    Cancer Communications, 2024, 44(4): 495-498. https://doi.org/10.1002/cac2.12506
    PDF