2025-04-16 2019, Volume 40 Issue 1

  • Select all
  • Yining Cao , Mickaël D. Chekroun , Aimin Huang , Roger Temam

    The Jin-Neelin model for the El Niño–Southern Oscillation (ENSO for short) is considered for which the authors establish existence and uniqueness of global solutions in time over an unbounded channel domain. The result is proved for initial data and forcing that are sufficiently small. The smallness conditions involve in particular key physical parameters of the model such as those that control the travel time of the equatorial waves and the strength of feedback due to vertical-shear currents and upwelling; central mechanisms in ENSO dynamics.

    From the mathematical view point, the system appears as the coupling of a linear shallow water system and a nonlinear heat equation. Because of the very different nature of the two components of the system, the authors find it convenient to prove the existence of solution by semi-discretization in time and utilization of a fractional step scheme. The main idea consists of handling the coupling between the oceanic and temperature components by dividing the time interval into small sub-intervals of length k and on each sub-interval to solve successively the oceanic component, using the temperature T calculated on the previous sub-interval, to then solve the sea-surface temperature (SST for short) equation on the current sub-interval. The passage to the limit as k tends to zero is ensured via a priori estimates derived under the aforementioned smallness conditions.

  • Zechun Hu , Qianqian Zhou

    In this note, the authors survey the existing convergence results for random variables under sublinear expectations, and prove some new results. Concretely, under the assumption that the sublinear expectation has the monotone continuity property, the authors prove that convergence in capacity is stronger than convergence in distribution, and give some equivalent characterizations of convergence in distribution. In addition, they give a dominated convergence theorem under sublinear expectations, which may have its own interest.

  • Zhibing Zhao , Xianneng Du , Yanhong Bao

    Given a triangle functor F: $\mathcal{A}\rightarrow\mathcal{B}$, the authors introduce the half image hImF, which is an additive category closely related to F. If F is full or faithful, then hImF admits a natural triangulated structure. However, in general, one can not expect that hImF has a natural triangulated structure. The aim of this paper is to prove that hImF admits a natural triangulated structure if and only if F satisfies the condition (SM). If this is the case, hImF is triangle-equivalent to the Verdier quotient $\mathcal{A}$/KerF.

  • Sanzhang Xu , Jianlong Chen , Dijana Mosić

    Let R be a ring with involution. It is well-known that an EP element in R is a core invertible element, but the question when a core invertible element is an EP element, the authors answer in this paper. Several new characterizations of star-core, normal and Hermitian elements in R are also presented.

  • Xing Lu

    In this paper, the synchronization for a kind of first order quasilinear hyperbolic system is taken into account. In this system, all the equations share the same positive wave speed. To realize the synchronization, a uniform constructive method is adopted, rather than an iteration process usually used in dealing with nonlinear systems. Furthermore, similar results on the exact boundary synchronization by groups can be obtained for a kind of first order quasilinear hyperbolic system of equations with different positive wave speeds by groups.

  • Yile Zhao , Xiaochun Fang , Xiaoming Xu

    Suppose that 0 → IAA/I → 0 is a tracially quasidiagonal extension of C* -algebras. In this paper, the authors give two descriptions of the K 0, K 1 index maps which are induced by the above extension and show that for any ϵ > 0, any τ in the tracial state space of A/I and any projection $\bar p \in A/I$ (any unitary $\bar u \in A/I$, there exists a projection pA (a unitary uA) such that $|\tau (\bar p) = \tau (\pi (p))| < \in (|\tau (\bar u) = \tau (\pi (u))| < \in )$.

  • Dong Liu , Yufeng Pei

    With the cohomology results on the Virasoro algebra, the authors determine the second cohomology group on the twisted Heisenberg-Virasoro algebra, which gives all deformations on the twisted Heisenberg-Virasoro algebra.

  • Ning Zhang , Yuting Lan

    In this paper, the authors generalize the concept of asymptotically almost negatively associated random variables from the classic probability space to the upper ex- pectation space. Within the framework, the authors prove some different types of Rosen- thal’s inequalities for sub-additive expectations. Finally, the authors prove a strong law of large numbers as the application of Rosenthal’s inequalities.

  • Zaihui Gan , Xin Jiang , Jing Li

    In this paper, the authors investigate the sharp threshold of a three-dimensional nonlocal nonlinear Schrödinger system. It is a coupled system which provides the mathematical modeling of the spontaneous generation of a magnetic field in a cold plasma under the subsonic limit. The main difficulty of the proof lies in exploring the inner structure of the system due to the fact that the nonlocal effect may bring some hinderance for establishing the conservation quantities of the mass and of the energy, constructing the corresponding variational structure, and deriving the key estimates to gain the expected result. To overcome this, the authors must establish local well-posedness theory, and set up suitable variational structure depending crucially on the inner structure of the system under study, which leads to define proper functionals and a constrained variational problem. By building up two invariant manifolds and then making a priori estimates for these nonlocal terms, the authors figure out a sharp threshold of global existence for the system under consideration.