On Characterizations of Special Elements in Rings with Involution

Sanzhang Xu , Jianlong Chen , Dijana Mosić

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (1) : 65 -78.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (1) : 65 -78. DOI: 10.1007/s11401-018-0118-0
Article

On Characterizations of Special Elements in Rings with Involution

Author information +
History +
PDF

Abstract

Let R be a ring with involution. It is well-known that an EP element in R is a core invertible element, but the question when a core invertible element is an EP element, the authors answer in this paper. Several new characterizations of star-core, normal and Hermitian elements in R are also presented.

Keywords

Moore-Penrose inverse / Core inverse / EP element / Star-core element / Normal element / Hermitian element

Cite this article

Download citation ▾
Sanzhang Xu, Jianlong Chen, Dijana Mosić. On Characterizations of Special Elements in Rings with Involution. Chinese Annals of Mathematics, Series B, 2019, 40(1): 65-78 DOI:10.1007/s11401-018-0118-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baksalary O. M., Trenkler G.. Core inverse of matrices. Linear Multilinear Algebra, 2010, 58(6): 681-697

[2]

Chen J. L., Zhu H. H., Patrićio P., Zhang Y. L.. Characterizations and representations of core and dual core inverses. Canad. Math. Bull., 2017, 60(2): 269-282

[3]

Han R. Z., Chen J. L.. Generalized inverses of matrices over rings. Chinese Quarterly J. Math., 1992, 7(4): 40-49

[4]

Hartwig R. E.. Block generalized inverses. Arch. Retion. Mech. Anal., 1976, 61(3): 197-251

[5]

Hartwig R. E., Spindelböck K.. Matrices for which A* and A† commmute. Linear Multilinear Algebra, 1984, 14: 241-256

[6]

Koliha J. J.. The Drazin and Moore–Penrose inverse in C*–algebras. Math. Proc. Royal Irish Acad. Ser. A, 1999, 99: 17-27

[7]

Koliha J. J., Patrićio P.. Elements of rings with equal spectral idempotents. J. Aust. Math. Soc., 2002, 72(1): 137-152

[8]

Mosić D., Djordjević D. S.. Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra, 2009, 18: 761-772

[9]

Mosić D., Djordjević D. S.. Moore–Penrose–invertible normal and Hermitian elements in rings. Linear Algebra Appl., 2009, 431: 732-745

[10]

Mosić D., Djordjević D. S.. New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Applied Math. Comput., 2012, 218(12): 6702-6710

[11]

Mosić D., Djordjević D. S., Koliha J. J.. EP elements in rings. Linear Algebra Appl., 2009, 431: 527-535

[12]

Rakić D. S., Dinčić N. Ć, Djordjević D. S.. Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl., 2014, 463: 115-133

[13]

Xu S. Z., Chen J. L., Zhang X. X.. New characterizations for core and dual core inverses in rings with involution. Front. Math. China., 2017, 12(1): 231-246

[14]

Zhu H. H., Chen J. L., Patrićio P.. Further results on the inverse along an element in semigroups and rings. Linear Multilinear Algebra, 2016, 64(3): 393-403

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/