Sharp Threshold of Global Existence for a Nonlocal Nonlinear Schrödinger System in ℝ3

Zaihui Gan , Xin Jiang , Jing Li

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (1) : 131 -160.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (1) : 131 -160. DOI: 10.1007/s11401-018-0123-3
Article

Sharp Threshold of Global Existence for a Nonlocal Nonlinear Schrödinger System in ℝ3

Author information +
History +
PDF

Abstract

In this paper, the authors investigate the sharp threshold of a three-dimensional nonlocal nonlinear Schrödinger system. It is a coupled system which provides the mathematical modeling of the spontaneous generation of a magnetic field in a cold plasma under the subsonic limit. The main difficulty of the proof lies in exploring the inner structure of the system due to the fact that the nonlocal effect may bring some hinderance for establishing the conservation quantities of the mass and of the energy, constructing the corresponding variational structure, and deriving the key estimates to gain the expected result. To overcome this, the authors must establish local well-posedness theory, and set up suitable variational structure depending crucially on the inner structure of the system under study, which leads to define proper functionals and a constrained variational problem. By building up two invariant manifolds and then making a priori estimates for these nonlocal terms, the authors figure out a sharp threshold of global existence for the system under consideration.

Keywords

Nonlocal nonlinear Schrödinger system / Sharp threshold / Blow-up / Global existence

Cite this article

Download citation ▾
Zaihui Gan, Xin Jiang, Jing Li. Sharp Threshold of Global Existence for a Nonlocal Nonlinear Schrödinger System in ℝ3. Chinese Annals of Mathematics, Series B, 2019, 40(1): 131-160 DOI:10.1007/s11401-018-0123-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berestycki H., Gallouët T., Kavian O.. Equàtions de champs scalaires euclidiens nonlinéaires daus de plan. C. R. Acad. Sci. Paris., Serie I, 1983, 297: 307-310

[2]

Berestycki H., Cazenave T.. Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéairees. C. R. Acad. Sci. Paris, 1981, 293: 489-492

[3]

Cazenave T.. An Introduction to Nonlinear Schrodinger Equations (3rd Ed.), Textos de Metodos Matematicos. Universidade Federal do Rio de Janeiro, 1996

[4]

Dendy R. O.. Plasma Dynamics, 1990

[5]

Ginibre J., Ozawa T.. Long range scattering for nonlinear Schrödinger and Hartree equations in space dimensions n ≥ 2. Comm. Math. Phys., 1993, 151: 619-645

[6]

Ginibre J., Velo G.. On a class of nonlinear Schrödinger equations I, The Cauchy problem, general case. J. Funct. Anal., 1979, 32: 1-32

[7]

Ginibre J., Velo G.. The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1985, 2: 309-327

[8]

Glassey R. T.. On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys., 1977, 18(9): 1794-1797

[9]

Hayashi N., Nakamitsu K., Tsutsumi M.. On solutions of the initial value problem for the nonlinear Schrödinger equations. J. Funct. Anal., 1987, 71: 218-245

[10]

Hayashi N., Tsutsumi Y.. Scattering theory for Hartree type equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1987, 46: 187-213

[11]

Kato T.. On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré,Physique Théorique, 1987, 49: 113-129

[12]

Kenig C., Ponce G., Vega L.. Small solution to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1993, 10: 255-288

[13]

Kono M., Skoric M. M., Ter H. D.. Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma. J. Plasma Phys., 1981, 26: 123-146

[14]

Laurey C.. The Cauchy problem for a generalized Zakharov system. Diffe. Integral Equ., 1995, 8(1): 105-130

[15]

Liu Y.. Existence and blow–up of solutions of a nonlinear Pochhammer–Chree equation. Indiana Univ. Math. J., 1996, 45: 797-816

[16]

Miao C. X.. Harmonic Analysis and Applications to Partial Differential Equations, 2004

[17]

Miao C. X.. The Modern Method of Nonlinear Wave Equations, Lectures in Contemporary Mathematics, 2005

[18]

Miao C. X., Zhang B.. Harmonic Analysis Method of Partial Differential Equations, 2 edition, 2008

[19]

Nirenberg L.. On elliptic partial differential equations. Ann. della Scuola Norm. Sup. Pisa, 1959, 13: 115-162

[20]

Ozawa T., Tsutsumi Y.. Blow–up of H1 solution for the nonlinear Schrödinger equation. J. Diff. Eq., 1991, 92: 317-330

[21]

Ozawa T., Tsutsumi Y.. Blow–up of H1 solutions for the one–dimension nonlinear Schrödinger equation with critical power nonlinearity. Proc. A. M. S., 1991, 111: 486-496

[22]

Strauss W. A.. Nonlinear Wave Equations, 1989

[23]

Weinstein M. I.. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys., 1983, 87: 567-576

[24]

Zakharov V. E.. The collapse of Langmuir waves, Soviet Phys.. JETP, 1972, 35: 908-914

[25]

Zakharov V. E., Musher S. L., Rubenchik A. M.. Hamiltonian approach to the description of nonlinear plasma phenomena. Physics Reports, 1985, 129(5): 285-366

[26]

Zhang J.. Sharp conditions of global existence for nonlinear Schrödinger and Klein–Gordon equations, Nonlinear Analysis. TMA, 2002, 48: 191-207

[27]

Zhang J.. Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potentia. Commun. in PDE, 2005, 30: 1429-1443

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/