Deformations on the Twisted Heisenberg-Virasoro Algebra

Dong Liu , Yufeng Pei

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (1) : 111 -116.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (1) : 111 -116. DOI: 10.1007/s11401-018-0121-5
Article

Deformations on the Twisted Heisenberg-Virasoro Algebra

Author information +
History +
PDF

Abstract

With the cohomology results on the Virasoro algebra, the authors determine the second cohomology group on the twisted Heisenberg-Virasoro algebra, which gives all deformations on the twisted Heisenberg-Virasoro algebra.

Keywords

Cohomology / Deformation / Virasoro algebra / Heisenberg algebra

Cite this article

Download citation ▾
Dong Liu, Yufeng Pei. Deformations on the Twisted Heisenberg-Virasoro Algebra. Chinese Annals of Mathematics, Series B, 2019, 40(1): 111-116 DOI:10.1007/s11401-018-0121-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arbarello E.. De Concini, C., Kac, V. G. and Procesi, C., Moduli spaces of curves and representation theory. Comm. Math. Phys., 1988, 117: 1-36

[2]

Billig Y.. Representations of the twisted Heisenberg–Virasoro algebra at level zero. Canad. Math. Bull., 2003, 46(4): 529-533

[3]

Fialowski A.. Formal rigidity of the Witt and Virasoro algebra. J. Math. Phys., 2012

[4]

Fuks D. B.. Cohomology of Infinite–Dimensional Lie Algebras, 1984

[5]

Gao S., Jiang C., Pei Y.. Low dimensional cohomology groups of the Lie algebras W(a, b). Commun. Alg., 2011, 39(2): 397-423

[6]

Grozman P. Ja.. Classification of bilinear invariant operators on tensor fields. Functional Anal. Appl, 1980, 14(2): 127-128

[7]

Guieu L., Roger C.. Algebra and the Virasoro Group, Geometric and Algebraic Aspects, 2007

[8]

Guo X., Lv R., Zhao K.. Simple Harish–Chandra modules, intermediate series modules, and Verma modules over the loop–Virasoro algebra. Forum Math., 2011, 23: 1029-1052

[9]

Kaplansky I., Santharoubane L. J.. Harish–Chandra modules over the Virasoro algebra. Math. Sci. Res. Inst. Publ., 1985

[10]

Li J., Su Y.. Representations of the Schrödinger–Virasoro algebras. J. Math. Phys., 2008

[11]

Liu D.. Classification of Harish–Chandra modules over some Lie algebras related to the Virasoro algebra. J. Algebra, 2016, 447: 548-559

[12]

Liu D., Gao S., Zhu L.. Classification of irreducible weight modules over W–algebra W(2, 2). J. Math. Phys., 2008, 49(11): 113503

[13]

Liu D., Jiang C.. Harish–Chandra modules over the twisted Heisenberg–Virasoro algebra. J. Math. Phys., 2008, 49(1): 012901

[14]

Liu D., Pei Y., Zhu L.. Lie bialgebra structures on the twisted Heisenberg–Virasoro algebra. J. Algebra, 2012, 359: 35-48

[15]

Lv R., Zhao K.. Classification of irreducible weight modules over the twisted Heisenberg–Virasoro algebra. Commun. Contemp. Math., 2010, 12(2): 183-205

[16]

Ng S. H., Taft E. J.. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J. Pure Appl. Alg., 2000, 151: 67-88

[17]

Ovsienko V. Yu., Rozhe K.. Extension of Virasoro group and Virasoro algebra by modules of tensor densities on S1. Functional Anal. Appl., 1996, 30: 290-291

[18]

Ovsienko V., Roger C.. Generalizations of the Virasoro group and Virasoro algebra through extensions by modules of tensor densities on S1. Indag. Math.(N.S.), 1998, 9(2): 277-288

[19]

Qiu S.. The cohomology of the Virasoro algebra with coefficients in a basic Harish–Chandra modules. Northeastern Math. J., 1989, 5(1): 75-83

[20]

Roger C., Unterberger J.. The Schrödinger–Virasoro Lie group and algebra: From geometry to representation theory. Annales Henri Poincaré, 2006, 7: 1477-1529

[21]

Shen R., Jiang C.. The derivation algebra and automorphism group of the twisted Heisenberg–Virasoro algebra. Commun. Alg., 2006, 34: 2547-2558

[22]

Zhang W., Dong C.. W–algebra W(2, 2) and the vertex operator algebra L 1 2,0. Commun. Math. Phys., 2009, 285(3): 991-1004

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/