Convergences of Random Variables Under Sublinear Expectations
Zechun Hu , Qianqian Zhou
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (1) : 39 -54.
Convergences of Random Variables Under Sublinear Expectations
In this note, the authors survey the existing convergence results for random variables under sublinear expectations, and prove some new results. Concretely, under the assumption that the sublinear expectation has the monotone continuity property, the authors prove that convergence in capacity is stronger than convergence in distribution, and give some equivalent characterizations of convergence in distribution. In addition, they give a dominated convergence theorem under sublinear expectations, which may have its own interest.
Sublinear expectation / Capacity / The dominated convergence theorem
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
/
| 〈 |
|
〉 |