2025-12-10 2025, Volume 5 Issue 4

  • Select all
  • research-article
    Pengyu Du , Jianxiong Hao , Kun Qian , Yue Zhang , Zhiqiang Zhang , Chaoyang Shi
    2025, 5(4): 100234-100234. https://doi.org/10.1016/j.birob.2025.100234

    Tendon-driven continuum manipulators can perform tasks in confined environments due to their flexibility and curvilinearity, especially in minimally invasive surgeries. However, the friction along tendons and tendon slack present challenges to their motion control. This work proposes a trajectory tracking controller based on adaptive fuzzy sliding mode control (AFSMC) for the tendon-driven continuum manipulators. It consists of a sliding mode control (SMC) law with two groups of adaptive fuzzy subcontrollers. The first one is utilized to estimate and compensate for friction forces along tendons. The second one adapts the switching terms of SMC to alleviate the chattering phenomenon and enhance control robustness. To prevent tendon slack, an antagonistic strategy along with the AFSMC controller is adopted to allocate driving forces. Simulation and experiment studies have been conducted to investigate the efficacy of the proposed controller. In free space experiments, the AFSMC controller generates an average root-mean-square error (RMSE) of 0.42% compared with 0.90% of the SMC controller. In the case of a 50 g load, the proposed controller reduces the average RMSE to 1.47% compared with 4.29% of the SMC controller. These experimental results demonstrate that the proposed AFSMC controller has high control accuracy, robustness, and reduced chattering.

  • research-article
    Yanbin Li , Wei Zhang , Zhiguo Zhang , Xiaogang Shi , Ziruo Li , Mingming Zhang , Wenzheng Chi
    2025, 5(4): 100235-100235. https://doi.org/10.1016/j.birob.2025.100235

    Simultaneous Localization and Mapping (SLAM) is widely used to solve the localization problem of unmanned devices such as robots. However, in degraded environments, the accuracy of SLAM is greatly reduced due to the lack of constrained features. In this article, we propose a deep learning-based adaptive compensation strategy for sensors. First, we create a dataset dedicated to training a degradation detection model, which contains coordinate data of particle swarms with different distributional features, and endow the model with degradation detection capability through supervised learning. Second, we design a lightweight network model with short computation time and good accuracy for real-time degradation detection tasks. Finally, an adaptive compensation strategy for sensors based on the degree of degradation is designed, where the SLAM is able to assign different weights to the sensor information according to the degree of degradation given by the model, to adjust the contribution of different sensors in the pose optimization process. We demonstrate through simulation experiments and real experiments that the robustness of the improved SLAM in degraded environments is significantly enhanced, and the accuracy of localization and mapping are improved.

  • research-article
    Yuanwen Zhang , Jingfeng Xiong , Haolan Xian , Chuheng Chen , Xinxing Chen , Haipeng Liang , Chenglong Fu , Yuquan Leng
    2025, 5(4): 100246-100246. https://doi.org/10.1016/j.birob.2025.100246

    Hip joint moments during walking are the key foundation for hip exoskeleton assistance control. Most recent studies have shown estimating hip joint moments instantaneously offers a lot of advantages compared to generating assistive torque profiles based on gait estimation, such as simple sensor requirements and adaptability to variable walking speeds. However, existing joint moment estimation methods still suffer from a lack of personalization, leading to estimation accuracy degradation for new users. To address the challenges, this paper proposes a hip joint moment estimation method based on generalized moment features (GMF). A GMF generator is constructed to learn GMF of the joint moment which is invariant to individual variations while remaining decodable into joint moments through a dedicated decoder. Utilizing this well-featured representation, a GRU-based neural network is used to predict GMF with joint kinematics data, which can easily be acquired by hip exoskeleton encoders. The proposed estimation method achieves a root mean square error of 0.1180 ± 0.0021 Nm/kg under 28 walking speed conditions on a treadmill dataset, improved by 6.5% compared to the model without body parameter fusion, and by 8.3% for the conventional fusion model with body parameter. Furthermore, the proposed method was employed on a hip exoskeleton with only encoder sensors and achieved an average 20.5% metabolic reduction () for users compared to assist-off condition in level-ground walking.