Design and dynamics modeling of a hybrid drive bionic robotic fish

Haoyu Huang , Shuai Xian , Chengye Xiong , Weihua Li , Yong Zhong

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (4) : 100247

PDF (2556KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (4) :100247 DOI: 10.1016/j.birob.2025.100247
Research Article
research-article

Design and dynamics modeling of a hybrid drive bionic robotic fish

Author information +
History +
PDF (2556KB)

Abstract

While recent advancements in hybrid propulsion systems for bionic robotic fish—combining biomimetic mechanisms with classical vector thrusters—demonstrate enhanced locomotion capabilities and application potential, challenges remain in modeling the coupled dynamics of heterogeneous propulsion mechanisms. This paper presents a hybrid-drive robotic fish architecture that synergistically integrates pectoral-fin-mounted propellers with a caudal-fin-based propulsion system. A three-dimensional dynamical model is developed to characterize the coupled interactions between the dual propulsion modes, incorporating a hydrodynamic computation framework that accounts for propeller wake effects on caudal fin performance. Systematic experimental validation confirms the model’s fidelity through quantitative analysis of swimming performance metrics, including cruising speed, turning radius, and trajectory tracking. The results show that the proposed hybrid propulsion strategy can effectively improve the swimming performance of the robotic fish, and the model can effectively predict the motions such as speed, turning diameter, and trajectory of the robotic fish, which provides a new idea for the development of bionic robotic fish.

Keywords

Robotic fish, Hybrid drive / Dynamics model / Swimming performance

Cite this article

Download citation ▾
Haoyu Huang, Shuai Xian, Chengye Xiong, Weihua Li, Yong Zhong. Design and dynamics modeling of a hybrid drive bionic robotic fish. Biomimetic Intelligence and Robotics, 2025, 5(4): 100247 DOI:10.1016/j.birob.2025.100247

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Shukla, H. Karki, Application of robotics in offshore oil and gas industry— A review part II, Robot. Auton. Syst. 75 (2016) 508-524, http://dx.doi.org/10.1016/j.robot.2015.09.013.

[2]

M.K. Habib, Y. Baudoin, F. Nagata, Robotics for rescue and risky intervention, in: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, 2011, pp. 3305-3310.

[3]

S. Chutia, N.M. Kakoty, D. Deka, A review of underwater robotics, navigation, sensing techniques and applications, Presented at the Proceedings of the 2017 3rd International Conference on Advances in Robotics, New Delhi, India, 2017, http://dx.doi.org/10.1145/3132446.3134872.

[4]

A. Prakash, et al., Bioinspiration and biomimetics in marine robotics: a review on current applications and future trends, Bioinspiration Biomimetics 19 (3) (2024) 031002,http://dx.doi.org/10.1088/1748-3190/ad3265.

[5]

X. Wu, T. Sood, Z. Chen, J. Chen, Robotic fish enabled offshore pipeline inspection, Presented at the Offshore Technology Conference, 2023, http://dx.doi.org/10.4043/32427-MS.

[6]

M. Maslin, S. Louis, K. Godary Dejean, L. Lapierre, S. Villéger, T. Claverie, Underwater robots provide similar fish biodiversity assessments as divers on coral reefs, 7 (4) 2021, pp. 567-578, http://dx.doi.org/10.1002/rse2.209.

[7]

R. Bogue, Underwater robots: a review of technologies and applications, Ind. Robot.: An Int. J. 42 (3) (2015) 186-191, http://dx.doi.org/10.1108/IR-01-2015-0010.

[8]

J. Li, W. Li, Q. Liu, B. Luo, W. Cui, Current Status and Technical Challenges in the Development of Biomimetic Robotic Fish-Type Submersible, Ocean- Land- Atmosphere Res. 3, 0036, http://dx.doi.org/10.34133/olar.0036.

[9]

D. Romano, C. Stefanini, Any colour you like: fish interacting with bioinspired robots unravel mechanisms promoting mixed phenotype aggregations, Bioinspiration Biomimetics 17 (4) (2022) 045004,http://dx.doi.org/10.1088/1748-3190/ac6848.

[10]

Y. Zhong, L. Zheng, R. Du, Robot fish with two-DOF pectoral fins and a wire-driven caudal fin, Adv. Robot. 32 (1) (2018) 25-36, http://dx.doi.org/10.1080/01691864.2017.1392344.

[11]

B. Sun, et al., Recent Progress in Modeling and Control of Bio-Inspired Fish Robots, J. Mar. Sci. Eng. 10 (6) http://dx.doi.org/10.3390/jmse10060773.

[12]

X. Zhou, K. Xia, H. Tu, H. Zhu, Y. Wei, F. Qu, Design and hydrodynamic analysis of a dual-drive bionic robotic fish, Ocean Eng. 319 (2025) 120234,http://dx.doi.org/10.1016/j.oceaneng.2024.120234.

[13]

G. Manduca, et al., A bioinspired control strategy ensures maneuverability and adaptability for dynamic environments in an underactuated robotic fish, J. Intell. Robot. Syst. 110 (2) (2024) 69,http://dx.doi.org/10.1007/s10846-024-02080-9.

[14]

Y. Zhong, Z. Hong, Y. Li, J. Yu, A general kinematic model of fish locomotion enables robot fish to master multiple swimming motions, IEEE Trans. Robot. 40 (2024) 750-763, http://dx.doi.org/10.1109/TRO.2023.3339015.

[15]

Q. Wang, Z. Hong, Y. Zhong, Learn to swim: Online motion control of an underactuated robotic eel based on deep reinforcement learning, Biomim. Intell. Robot. 2 (4) (2022) 100066,http://dx.doi.org/10.1016/j.birob.2022.100066.

[16]

Y. Zhong, Z. Li, R. Du, A novel robot fish with wire-driven active body and compliant tail, IEEE/ASME Trans. Mechatronics 22 (4) (2017) 1633-1643, http://dx.doi.org/10.1109/TMECH.2017.2712820.

[17]

Y. Liang, K. Wang, Y. Mo, Y. Zhong, A Wire-Driven Flexible Vector-Propelled Robotic Fish with Omnidirectional Adaptive Caudal Fin, in: 2023 29th International Conference on Mechatronics and Machine Vision in Practice, M2VIP, 2023, pp. 1-6.

[18]

L. Cen, A. Erturk, Bio-inspired aquatic robotics by untethered piezohydroelastic actuation, Bioinspiration Biomimetics 8 (1) (2013) 016006,http://dx.doi.org/10.1088/1748-3182/8/1/016006.

[19]

A.D. Marchese, C.D. Onal, D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators, Soft Robot. 1 (1) (2014) 75-87, http://dx.doi.org/10.1089/soro.2013.0009.

[20]

X. Chen, J. Yu, Z. Wu, Y. Meng, S. Kong, Toward a maneuverable miniature robotic fish equipped with a novel magnetic actuator system, IEEE Trans. Syst. Man, Cybern.: Syst. 50 (7) (2020) 2327-2337, http://dx.doi.org/10.1109/TSMC.2018.2812903.

[21]

S. Liu, C. Liu, G. Wei, L. Ren, L. Ren, Design, modeling, and optimization of hydraulically powered double-joint soft robotic fish, IEEE Trans. Robot. 41 (2025) 1211-1223, http://dx.doi.org/10.1109/TRO.2025.3526087.

[22]

Z. Chen, P. Hou, Z. Ye, Modeling of Robotic Fish Propelled by a Servo/IPMC Hybrid Tail, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2018, pp. 8146-8151.

[23]

Y. Zhong, Q. Wang, J. Yang, C. Wang, Design, modeling, and experiment of underactuated flexible gliding robotic fish, IEEE/ASME Trans. Mechatronics 29 (3) (2024) 2266-2276, http://dx.doi.org/10.1109/TMECH.2023.3328034.

[24]

X. Zheng, M. Xiong, R. Tian, J. Zheng, M. Wang, G. Xie, Three-dimensional dynamic modeling and motion analysis of a fin-actuated robot, IEEE/ASME Trans. Mechatronics 27 (4) (2022) 1990-1997, http://dx.doi.org/10.1109/TMECH.2022.3174173.

[25]

Y. Ji, Y. Wei, J. Liu, D. An, Design and realization of a novel hybrid-drive robotic fish for aquaculture water quality monitoring, J. Bionic Eng. 20 (2) (2023) 543-557, http://dx.doi.org/10.1007/s42235-022-00282-1.

[26]

J. Tang, J. Chang, B. Li, A. Zhang, Modeling and control of hybrid-driven gliding motion for an underwater gliding snake-like robot, Int. J. Control. Autom. Syst. 19 (9) (2021) 3190-3198, http://dx.doi.org/10.1007/s12555-020-0545-z.

[27]

S. Li, Y. Li, Z. Wu, J. Wang, M. Tan, 3-D Path Following Control for a Miniature Maneuverable Robotic Fish with Hybrid Actuators, in: 2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR, 2022, pp. 7-12.

[28]

S. Li, Z. Wu, S. Dai, J. Wang, M. Tan, J. Yu, Tight-space maneuvering of a hybrid-driven robotic fish using backstepping-based adaptive control, IEEE/ASME Trans. Mechatronics 29 (5) (2024) 3219-3231, http://dx.doi.org/10.1109/TMECH.2023.3338879.

[29]

A.J. Ijspeert, A. Crespi, Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model, in: Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 262-268.

[30]

F. Xie, Y. Zhong, R. Du, Z. Li, Central pattern generator (CPG) control of a biomimetic robot fish for multimodal swimming, J. Bionic Eng. 16 (2) (2019) 222-234, http://dx.doi.org/10.1007/s42235-019-0019-2.

[31]

R. Izadi-Zamanabadi, M. Blanke, A ship propulsion system as a benchmark for fault-tolerant control, Control Eng. Pract. 7 (2) (1999) 227-239, http://dx.doi.org/10.1016/S0967-0661(98)00149-X.

[32]

G. Hamill, C. Kee, D. Ryan, Three-dimension efflux velocity characteristics of marine propeller jets, Proc. Inst. Civ. Eng.: Marit. Eng. 168 (2015) 62-75, http://dx.doi.org/10.1680/maen.14.00019.

[33]

M.L. Albertson, Y.B. Dai, R.A. Jensen, H. Rouse, Diffusion of submerged jets, Trans. Am. Soc. Civ. Eng. 115 (1) (1950) 639-664, http://dx.doi.org/10.1061/TACEAT.0006302.

[34]

G.A. Hamill, C. Kee, Predicting axial velocity profiles within a diffusing marine propeller jet, Ocean Eng. 124 (2016) 104-112, http://dx.doi.org/10.1016/j.oceaneng.2016.07.061.

PDF (2556KB)

161

Accesses

0

Citation

Detail

Sections
Recommended

/