Tracking control for Pneumatic muscle actuators with unknown dynamics and output constraints

Xingchen Li , Xifeng Gao

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (4) : 100252

PDF (3815KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (4) :100252 DOI: 10.1016/j.birob.2025.100252
Research Article
research-article

Tracking control for Pneumatic muscle actuators with unknown dynamics and output constraints

Author information +
History +
PDF (3815KB)

Abstract

Among the various soft actuators explored for robotic applications, the pneumatic muscle actuators (PMAs) stand out because of many advantages, such as compliant structures, high power-to-weight/volume ratios, and lightweight materials. Despite these advantages, their inherent nonlinearities and time-varying dynamics pose significant challenges for tracking control. To tackle this challenge, we present a robust control method that is structurally simple and computationally inexpensive. Such a method is comprised of an error transformation scheme, which is deeply explored to withstand model uncertainties to accomplish the output tracking with assigned accuracy, and a tuning function for relaxing requirements on the initial conditions. Experimental results of the PMA are presented to validate the concepts.

Keywords

Pneumatic muscle actuators (PMAs) / Unknown dynamics / Tracking control / Assigned accuracy / Output constraints

Cite this article

Download citation ▾
Xingchen Li, Xifeng Gao. Tracking control for Pneumatic muscle actuators with unknown dynamics and output constraints. Biomimetic Intelligence and Robotics, 2025, 5(4): 100252 DOI:10.1016/j.birob.2025.100252

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Kim, Y. Lee, S. Lee, J. Kim, H.S. Kim, T. Seo, STEP: A new mobile platform with 2-DOF transformable wheels for service robots, IEEE/ ASME Trans. Mechatron. 25 (4) (2020) 1859-1868, http://dx.doi.org/10.1109/TMECH.2020.2992280.

[2]

Y. Huang, E. Burdet, L. Cao, P.T. Phan, A.M.H. Tiong, S.J. Phee, A subject-specific four-degree-of-freedom foot interface to control a surgical robot, IEEE/ ASME Trans. Mechatron. 25 (2) (2020) 951-963, http://dx.doi.org/10.1109/TMECH.2020.2964295.

[3]

M.F. Rox, D.S. Ropella, R.J. Hendrick, E. Blum, R.P. Naftel, H.C. Bow, S.D. Herrell, K.D. Weaver, L.B. Chambless, R.J. Webster III, Mechatronic design of a two-arm concentric tube robot system for rigid neuroendoscopy, IEEE/ ASME Trans. Mechatron. 25 (3) (2020) 1432-1443, http://dx.doi.org/10.1109/TMECH.2020.2976897.

[4]

H. Hassan, C. Domínguez, J. Martínez, A. Perles, J. Capella, J. Albaladejo, A multidisciplinary PBL robot control project in automation and electronic engineering, IEEE Trans. Educ. 58 (3) (2015) 167-172, http://dx.doi.org/10.1109/TE.2014.2348538.

[5]

T. Takeda, Y. Hirata, K. Kosuge, Dance step estimation method based on HMM for dance partner robot, IEEE Trans. Ind. Electron. 54 (2) (2007) 699-706, http://dx.doi.org/10.1109/TIE.2007.891642.

[6]

X. Gao, Y. Sun, L. Hao, H. Yang, Y. Chen, C. Xiang, A new soft pneumatic elbow pad for joint assistance with application to smart campus, IEEE Access 6 (2018) 38967-38976, http://dx.doi.org/10.1109/ACCESS.2018.2852757.

[7]

X. Gao, X. Li, J. Xiao, L. Hao, Robust PI-type output feedback control of unknown nonlinear systems, IEEE Trans. Ind. Electron. 69 (9) (2021) 9396-9405, http://dx.doi.org/10.1109/TIE.2021.3112995.

[8]

X. Gao, X. Li, Y. Sun, L. Hao, H. Yang, C. Xiang, Model-free tracking control of continuum manipulators with global stability and assigned accuracy, IEEE Trans. Syst. Man, Cybern. Syst. 69 (9) (2021) 9396-9405, http://dx.doi.org/10.1109/TSMC.2020.30187565.

[9]

X. Gao, J.-X. Zhang, L. Hao, Fault-tolerant control of pneumatic continuum manipulators under actuator faults, IEEE Trans. Ind. Inform. 17 (12) (2021) 8299-8307, http://dx.doi.org/10.1109/TII.2021.3064576.

[10]

X. Gao, X. Li, C. Zhao, L. Hao, C. Xiang, Variable stiffness structural design of a dual-segment continuum manipulator with independent stiffness and angular position, Robot. Comput.-Integr. Manuf. 67 (5) (2021) 102000,http://dx.doi.org/10.1016/j.rcim.2020.102000.

[11]

J. Zhang, J. Sheng, C.T. O’Neill, C.J. Walsh, R.J. Wood, J. Ryu, J.P. Desai, M.C. Yip, Robotic artificial muscles: Current progress and future perspectives, IEEE Trans. Robot. 35 (3) (2019) 761-781, http://dx.doi.org/10.1109/TRO.2019.2894371.

[12]

J. Burgner-Kahrs, D.C. Rucker, H. Choset, Continuum robots for medical applications: A survey, IEEE Trans. Robot. 31 (6) (2015) 1261-1280, http://dx.doi.org/10.1109/TRO.2015.2489500.

[13]

C.-P. Chou, B. Hannaford, Measurement and modeling of McKibben pneumatic artificial muscles, IEEE Trans. Robot. Autom. 12 (1) (1996) 90-102, http://dx.doi.org/10.1109/70.481753.

[14]

D.B. Reynolds, D.W. Repperger, C.A. Phillips, G. Bandry, Modeling the dynamic characteristics of pneumatic muscle, Ann. Biomed. Eng. 31 (3) (2003) 310-317, http://dx.doi.org/10.1114/1.1554921.

[15]

D. Zhang, X. Zhao, J. Han, Active model-based control for pneumatic artificial muscle, IEEE Trans. Ind. Electron. 64 (2) (2017) 1686-1695, http://dx.doi.org/10.1109/TIE.2016.2606080.

[16]

G. Andrikopoulos, G. Nikolakopoulos, I. Arvanitakis, S. Manesis, Piecewise affine modeling and constrained optimal control for a pneumatic artificial muscle, IEEE Trans. Ind. Electron. 61 (2) (2014) 904-916, http://dx.doi.org/10.1109/TIE.2013.2254094.

[17]

J. Wu, J. Huang, Y. Wang, K. Xing, Nonlinear disturbance observer-based dynamic surface control for trajectory tracking of pneumatic muscle system, IEEE Trans. Control Syst. Technol. 22 (2) (2014) 440-455, http://dx.doi.org/10.1109/TCST.2013.2262074.

[18]

H. Aschemann, D. Schindele, Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators, IEEE Trans. Ind. Electron. 55 (11) (2008) 3855-3864, http://dx.doi.org/10.1109/TIE.2008.2003202.

[19]

C.P. Vo, X.D. To, K.K. Ahn, A novel adaptive gain integral terminal sliding mode control scheme of a pneumatic artificial muscle system with time-delay estimation, IEEE Access 7 (2019) 141133-141143, http://dx.doi.org/10.1109/ACCESS.2019.2944197.

[20]

Y. Qin, H. Zhang, X. Wang, J. Han, Active model-based hysteresis compensation and tracking control of pneumatic artificial muscle, Sensors 22 (1) (2022) 364,http://dx.doi.org/10.3390/s22010364.

[21]

G. Liu, N. Sun, T. Yang, Z. Liu, Y. Fang, Equivalent-input-disturbance rejection-based adaptive motion control for pneumatic artificial muscle arms via hysteresis compensation models, Control. Eng. Pr. 138 (2023) 105609,http://dx.doi.org/10.1016/j.conengprac.2023.105609.

[22]

K. Qian, Z. Li, S. Chakrabarty, Z. Zhang, S.Q. Xie, Robust iterative learning control for pneumatic muscle with uncertainties and state constraints, IEEE Trans. Ind. Electron. 70 (2) (2022) 1802-1810, http://dx.doi.org/10.1109/TIE.2022.3159970.

[23]

H. Zhang, Y. Li, Y. Guo, X. Chen, Q. Ren, Control of pneumatic artificial muscles with SNN-based cerebellar-like model, International Conference on Social Robotics, Springer, 2021, pp. 824-828, http://dx.doi.org/10.1007/978-3-030-90525-5_79.

[24]

G. Andrikopoulos, G. Nikolakopoulos, S. Manesis, Development and control of a hybrid controlled vertical climbing robot based on pneumatic muscle actuators, J. Control. Eng. Technol. 1 (2) (2011) 53-58, http://dx.doi.org/10.1007/s11771-009-0160-x.

[25]

B. Tondu, Single linear integral action control for closed-loop positioning of a biomimetic actuator with artificial muscles, Proc. Eur. Control Conf., 2015, pp. 3585-3590, http://dx.doi.org/10.1109/ECC.2015.7331088.

[26]

S.W. Chan, J.H. Lilly, D.W. Repperger, J.E. Berlin, Fuzzy PD+I learning control for a pneumatic muscle, Proc. 12th IEEE Int. Conf. FUZZ., 2003, pp. 278-283, http://dx.doi.org/10.1109/FUZZ.2003.1209375.

[27]

K. Xing, Y. Wang, Q. Zhu, H. Zhou, Modeling and control of mckibben artificial muscle enhanced with echo state networks, Control. Eng. Pr. 20 (5) (2012) 477-488, http://dx.doi.org/10.1016/j.conengprac.2012.01.002.

[28]

D.X. Ba, T.Q. Dinh, K.K. Ahn, An integrated intelligent nonlinear control method for a pneumatic artificial muscle, IEEE/ ASME Trans. Mechatron. 21 (4) (2016) 1835-1845, http://dx.doi.org/10.1109/TMECH.2016.2558292.

[29]

P. Carbonell, Z.P. Jiang, D.W. Repperger, A fuzzy backstepping controller for a pneumatic muscle actuator system, Proc. IEEE Int. Symp. Intell. Control, 2001, pp. 353-358, http://dx.doi.org/10.1109/ISIC.2001.971535.

[30]

H.I. Chen, M.C. Shih, Visual control of an automatic manipulation system by microscope and pneumatic actuator, IEEE Trans. Autom. Sci. Eng. 10 (1) (2013) 215-218, http://dx.doi.org/10.1109/TASE.2012.2205239.

[31]

Y. Song, Y. Wang, C. Wen, Adaptive fault-tolerant PI tracking control with guaranteed transient and steady-state performance, IEEE Trans. Autom. Control 62 (1) (2017) 481-487, http://dx.doi.org/10.1109/TAC.2016.2554362.

[32]

N. Sun, D. Liang, Y. Wu, Y. Chen, Y. Qin, Y. Fang, Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints, IEEE Trans. Ind. Inf. 16 (2) (2020) 969-979, http://dx.doi.org/10.1109/TII.2019.2923715.

[33]

Q. Ai, D. Ke, J. Zuo, W. Meng, Q. Liu, Z. Zhang, S.Q. Xie, High-order model-free adaptive iterative learning control of pneumatic artificial muscle with enhanced convergence, IEEE Trans. Ind. Electron. 67 (11) (2020) 9548-9559, http://dx.doi.org/10.1109/TIE.2019.2952810.

[34]

J.-P. Cai, F. Qian, R. Yu, L. Shen, Adaptive control for a pneumatic muscle joint system with saturation input, IEEE Access 8 (2020) 117698-117705, http://dx.doi.org/10.1109/ACCESS.2020.3004823.

[35]

L. Zhu, X. Shi, Z. Chen, H. Zhang, C. Xiong, Adaptive servomechanism of pneumatic muscle actuators with uncertainties, IEEE Trans. Ind. Electron. 64 (4) (2017) 3329-3337, http://dx.doi.org/10.1109/TIE.2016.2573266.

[36]

H. Li, D. Gong, J. Yu, Control of robotic joint actuated by antagonistic pneumatic artificial muscles based on model-free reinforcement learning, 2021 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2021, pp. 887-892, http://dx.doi.org/10.1109/ROBIO54168.2021.9739393.

[37]

G. Liu, N. Sun, T. Yang, Y. Fang, Reinforcement learning-based prescribed performance motion control of pneumatic muscle actuated robotic arms with measurement noises, IEEE Trans. Syst. Man Cybern. Syst. 53 (3) (2022) 1801-1812, http://dx.doi.org/10.1109/TSMC.2022.3207575.

[38]

Y. Li, Q. Liu, W. Meng, Y. Xie, Q. Ai, S.Q. Xie, MISO model free adaptive control of single joint rehabilitation robot driven by pneumatic artificial muscles, 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, IEEE, 2020, pp. 1700-1705, http://dx.doi.org/10.1109/AIM43001.2020.9158805.

[39]

Z. Zhao, L. Hao, M. Liu, H. Gao, X. Li, Prescribed performance model-free adaptive terminal sliding mode control for the pneumatic artificial muscles elbow exoskeleton, J. Mech. Sci. Technol. 35 (2021) 3183-3197, http://dx.doi.org/10.1007/s12206-021-0639-4.

[40]

J. Zhang, G. Yang, Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions, IEEE Trans. Autom. Control 62 (12) (2017) 6529-6535, http://dx.doi.org/10.1109/TAC.2017.2705033.

[41]

J. Zhang, G. Yang, Fuzzy adaptive output feedback control of uncertain nonlinear systems with prescribed performance, IEEE Trans. Cybern. 48 (5) (2018) 1342-1354, http://dx.doi.org/10.1109/TCYB.2017.2692767.

[42]

S. He, S. Dai, F. Luo, Asymptotic trajectory tracking control with guaranteed transient behavior for MSV with uncertain dynamics and external disturbances, IEEE Trans. Ind. Electron. 66 (5) (2019) 3712-3720, http://dx.doi.org/10.1109/TIE.2018.2842720.

[43]

J.-X. Zhang, G.-H. Yang, Adaptive prescribed performance control of nonlinear output-feedback systems with unknown control direction, Internat. J. Robust Nonlinear Control 28 (16) (2018) 4696-4712, http://dx.doi.org/10.1002/rnc.4277.

[44]

X. Jin, Adaptive fault-tolerant control for a class of output-constrained nonlinear systems, Internat. J. Robust Nonlinear Control 59 (2015) 200-205, http://dx.doi.org/10.1002/rnc.3293.

[45]

J.-X. Zhang, G.-H. Yang, Robust adaptive fault-tolerant control for a class of unknown nonlinear systems, IEEE Trans. Ind. Electron. 64 (1) (2017) 585-594, http://dx.doi.org/10.1109/TIE.2016.2595481.

[46]

S. El-Ferik, H.A. Hashim, F.L. Lewis, Neuro-adaptive distributed control with prescribed performance for the synchronization of unknown nonlinear networked systems, IEEE Trans. Syst. Man, Cybern. Syst. 48 (12) (2018) 2135-2144, http://dx.doi.org/10.1109/TSMC.2017.2702705.

[47]

H. Yang, Q.-L. Han, X. Ge, L. Ding, Y. Xu, B. Jiang, D. Zhou, Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies, IEEE Trans. Ind. Inf. 16 (1) (2020) 4-17, http://dx.doi.org/10.1109/TII.2019.2945004.

[48]

J.-X. Zhang, G.-H. Yang, Fault-tolerant fixed-time trajectory tracking control of autonomous surface vessels with specified accuracy, IEEE Trans. Ind. Electron. 67 (6) (2020) 4889-4899, http://dx.doi.org/10.1109/TIE.2019.2931242.

[49]

Z. Hou, S. Jin, Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems, IEEE Trans. Neural Netw. 22 (12) (2011) 2173-2188, http://dx.doi.org/10.1109/TNN.2011.2176141.

PDF (3815KB)

118

Accesses

0

Citation

Detail

Sections
Recommended

/