Joint moment estimation for hip exoskeleton control: A generalized moment feature generation method

Yuanwen Zhang , Jingfeng Xiong , Haolan Xian , Chuheng Chen , Xinxing Chen , Haipeng Liang , Chenglong Fu , Yuquan Leng

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (4) : 100246 -100246.

PDF (3827KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (4) : 100246 -100246. DOI: 10.1016/j.birob.2025.100246
Research Article
research-article

Joint moment estimation for hip exoskeleton control: A generalized moment feature generation method

Author information +
History +
PDF (3827KB)

Abstract

Hip joint moments during walking are the key foundation for hip exoskeleton assistance control. Most recent studies have shown estimating hip joint moments instantaneously offers a lot of advantages compared to generating assistive torque profiles based on gait estimation, such as simple sensor requirements and adaptability to variable walking speeds. However, existing joint moment estimation methods still suffer from a lack of personalization, leading to estimation accuracy degradation for new users. To address the challenges, this paper proposes a hip joint moment estimation method based on generalized moment features (GMF). A GMF generator is constructed to learn GMF of the joint moment which is invariant to individual variations while remaining decodable into joint moments through a dedicated decoder. Utilizing this well-featured representation, a GRU-based neural network is used to predict GMF with joint kinematics data, which can easily be acquired by hip exoskeleton encoders. The proposed estimation method achieves a root mean square error of 0.1180 ± 0.0021 Nm/kg under 28 walking speed conditions on a treadmill dataset, improved by 6.5% compared to the model without body parameter fusion, and by 8.3% for the conventional fusion model with body parameter. Furthermore, the proposed method was employed on a hip exoskeleton with only encoder sensors and achieved an average 20.5% metabolic reduction () for users compared to assist-off condition in level-ground walking.

Keywords

Lower-limb exoskeleton / Hip joint moment estimation / Deep learning

Cite this article

Download citation ▾
Yuanwen Zhang, Jingfeng Xiong, Haolan Xian, Chuheng Chen, Xinxing Chen, Haipeng Liang, Chenglong Fu, Yuquan Leng. Joint moment estimation for hip exoskeleton control: A generalized moment feature generation method. Biomimetic Intelligence and Robotics, 2025, 5(4): 100246-100246 DOI:10.1016/j.birob.2025.100246

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We sincerely thank all the students in HARLab for their invaluable support of this work, as well as all the participants in our experiments for their time and effort.

This work was supported by National Key R&D Program of China (2024YFC3082800), National Natural Science Foundation of China (52175272), Guangdong Basic and Applied Basic Research Foundation (2024B1515020008 and 2023B1515130007), and Shenzhen Science and Technology Program (KCXFZ20230731093401004, RCYX20231211090345058 and JCYJ20220530114809021).

Data availability

All data needed to evaluate the conclusions are presented in the manuscript and/or the Supplementary Materials. Additional data that support the findings of this study are available from the corresponding author upon reasonable request.

References

[1]

D.J. Hyun, H. Park, T. Ha, S. Park, K. Jung, Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance, Robot. Auton. Syst. 95 (2017) 181-195.

[2]

W. Cao, C. Chen, D. Wang, X. Wu, L. Chen, T. Xu, J. Liu, A lower limb exoskeleton with rigid and soft structure for loaded walking assistance, IEEE Robot. Autom. Lett. 7 (1) (2022) 454-461.

[3]

A. Kapsalyamov, P.K. Jamwal, S. Hussain, M.H. Ghayesh, State of the art lower limb robotic exoskeletons for elderly assistance, IEEE Access 7 (2019) 95075-95086.

[4]

B. Kalita, J. Narayan, S.K. Dwivedy, Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review, Int. J. Soc. Robot. 13 (4) (2021) 775-793.

[5]

R.L. Medrano, E.J. Rouse, G.C. Thomas, Biological joint loading and exoskeleton design, IEEE Trans. Med. Robot. Bionics 3 (3) (2021) 847-851.

[6]

D.J. Farris, G.S. Sawicki, The mechanics and energetics of human walking and running: A joint level perspective, J. R. Soc. Interface 9 (66) (2012) 110-118.

[7]

J. Kim, G. Lee, R. Heimgartner, D. Arumukhom Revi, N. Karavas, D. Nathanson, I. Galiana, A. Eckert-Erdheim, P. Murphy, D. Perry, N. Menard, D. K. Choe, P. Malcolm, C.J. Walsh, Reducing the metabolic rate of walking and running with a versatile, portable exosuit, Science 365 (6454) (2019) 668-672.

[8]

T. Xue, Z. Wang, T. Zhang, M. Zhang, Adaptive oscillator-based robust control for flexible hip assistive exoskeleton, IEEE Robot. Autom. Lett. 4 (4) (2019) 3318-3323.

[9]

Y. Qian, Y. Wang, C. Chen, J. Xiong, Y. Leng, H. Yu, C. Fu, Predictive locomotion mode recognition and accurate gait phase estimation for hip exoskeleton on various terrains, IEEE Robot. Autom. Lett. 7 (3) (2022) 6439-6446.

[10]

K. Seo, K. Kim, Y.J. Park, J.-K. Cho, J. Lee, B. Choi, B. Lim, Y. Lee, Y. Shim, Adaptive oscillator-based control for active lower-limb exoskeleton and its metabolic impact, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, IEEE, Brisbane, QLD, 2018, pp. 6752-6758.

[11]

Y. Qian, H. Yu, C. Fu, Adaptive oscillator-based assistive torque control for gait asymmetry correction with a nSEA-driven hip exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng. 30 (2022) 2906-2915.

[12]

J. Zhang, C.C. Cheah, S.H. Collins, Experimental comparison of torque control methods on an ankle exoskeleton during human walking, in: 2015 IEEE International Conference on Robotics and Automation, ICRA, IEEE, Seattle, WA, USA, 2015, pp. 5584-5589.

[13]

B. Lim, J. Lee, J. Jang, K. Kim, Y.J. Park, K. Seo, Y. Shim, Delayed output feedback control for gait assistance with a robotic hip exoskeleton, IEEE Trans. Robot. 35 (4) (2019) 1055-1062.

[14]

G.M. Gasparri, J. Luque, Z.F. Lerner, Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance, IEEE Trans. Neural Syst. Rehabil. Eng. 27 (4) (2019) 751-759.

[15]

D.D. Molinaro, I. Kang, A.J. Young, Estimating human joint moments unifies exoskeleton control, reducing user effort, Sci. Robot. 9 (88) (2024) eadi8852.

[16]

T.S. Buchanan, D.G. Lloyd, K. Manal, T.F. Besier, Estimation of muscle forces and joint moments using a forward-inverse dynamics model, Med. Sci. Sport. Exerc. 37 (11) (2005) 1911-1916.

[17]

S.S.P.A. Bishe, T. Nguyen, Y. Fang, Z.F. Lerner, Adaptive ankle exoskeleton control: Validation across diverse walking conditions, IEEE Trans. Med. Robot. Bionics 3 (3) (2021) 801-812.

[18]

R.B.D. Joshi, D. Joshi, MoveNet: A deep neural network for joint profile prediction across variable walking speeds and slopes, IEEE Trans. Instrum. Meas. 70 (2021) 1-11.

[19]

M. Mundt, W. Thomsen, T. Witter, A. Koeppe, S. David, F. Bamer, W. Potthast, B. Markert, Prediction of lower limb joint angles and moments during gait using artificial neural networks, Med. Biol. Eng. Comput. 58 (1)(2020) 211-225.

[20]

J. Zhang, Y. Zhao, T. Bao, Z. Li, K. Qian, A.F. Frangi, S.Q. Xie, Z.-Q. Zhang, Boosting personalised musculoskeletal modelling with physics-informed knowledge transfer, IEEE Trans. Instrum. Meas. (2022) 1-1.

[21]

C. Wang, P.P.K. Chan, B.M.F. Lam, S. Wang, J.H. Zhang, Z.Y.S. Chan, R.H.M. Chan, K.K.W. Ho, R.T.H. Cheung, Real-time estimation of knee adduction moment for gait retraining in patients with knee osteoarthritis, IEEE Trans. Neural Syst. Rehabil. Eng. 28 (4) (2020) 888-894.

[22]

D.D. Molinaro, I. Kang, J. Camargo, M.C. Gombolay, A.J. Young, Subject-independent, biological hip moment estimation during multimodal over-ground ambulation using deep learning, IEEE Trans. Med. Robot. Bionics 4 (1)(2022) 219-229.

[23]

M.S.B. Hossain, Z. Guo, H. Choi, Estimation of lower extremity joint moments and 3D ground reaction forces using IMU sensors in multiple walking conditions: A deep learning approach, IEEE J. Biomed. Heal. Inform. 27 (6) (2023) 2829-2840.

[24]

Y. Zhang, P. Tino, A. Leonardis, K. Tang, A survey on neural network interpretability, IEEE Trans. Emerg. Top. Comput. Intell. 5 (5) (2021) 726-742.

[25]

M. Eslamy, M. Rastgaar, Multi-joint leg moment estimation during walking using thigh or shank angles, IEEE Trans. Neural Syst. Rehabil. Eng. 31 (2023) 1108-1118.

[26]

D.D. Molinaro, E.O. Park, A.J. Young, Anticipation and delayed estimation of sagittal plane human hip moments using deep learning and a robotic hip exoskeleton, in: 2023 IEEE International Conference on Robotics and Automation, ICRA, IEEE, London, United Kingdom, 2023, pp. 12679-12685.

[27]

Y. Zhang, J. Xiong, Y. Qian, X. Chen, Y. Guo, C. Fu, Y. Leng, Predict hip joint moment using CNN for hip exoskeleton control, in: International Conference on Intelligent Robotics and Applications, Springer, 2023, pp. 200-209.

[28]

P.T. Yamak, L. Yujian, P.K. Gadosey, A comparison between arima, lstm, and gru for time series forecasting , in: Proceedings of the 2019 2nd Inter-national Conference on Algorithms, Computing and Artificial Intelligence, 2019, pp. 49-55.

[29]

K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neural machine translation: Encoder-decoder approaches, 2014, arXiv: 1409.1259.

[30]

J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, 2014, arXiv:1412.3555.

[31]

I. Kang, H. Hsu, A. Young, The effect of hip assistance levels on human energetic cost using robotic hip exoskeletons, IEEE Robot. Autom. Lett. 4(2)(2019) 430-437.

[32]

D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.

[33]

J. Camargo, A. Ramanathan, W. Flanagan, A. Young, A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions, J. Biomech. 119 (2021) 110320.

[34]

D.M. Hawkins, The problem of overfitting, J. Chem. Inf. Comput. Sci. Comput. Sci. 44 (1)(2004) 1-12.

[35]

O.A. Montesinos López, A. Montesinos López, J. Crossa, Overfitting, model tuning, and evaluation of prediction performance, in: Multivariate Statisti-cal Machine Learning Methods for Genomic Prediction, Springer, 2022, pp. 109-139.

[36]

H.G. Kang, J.B. Dingwell, Separating the effects of age and walking speed on gait variability, Gait Posture 27 (4) (2008) 572-577.

[37]

K.L. Poggensee, S.H. Collins, How adaptation, training, and customization contribute to benefits from exoskeleton assistance, Sci. Robot. 6 (58) (2021) eabf1078.

[38]

P. Kang, J. Li, S. Jiang, P.B. Shull, Reduce system redundancy and opti-mize sensor disposition for EMG-IMU multimodal fusion human-machine interfaces with XAI, IEEE Trans. Instrum. Meas. 72 (2022) 1-9.

[39]

K. Zhu, D. Li, J. Li, P.B. Shull, Real-time IMU-based kinematics in the presence of wireless data drop, IEEE J. Biomed. Heal. Inform. (2024).

[40]

J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, S.-H. Deng, Hyperparameter optimization for machine learning models based on Bayesian optimization, J. Electron. Sci. Technol. 17 (1) (2019) 26-40.

[41]

J.-H. Jacobsen, A. Smeulders, E. Oyallon, I-RevNet: Deep invertible networks, 2018, arXiv:1802.07088.

[42]

A.N. Gomez, M. Ren, R. Urtasun, R.B. Grosse, The reversible residual network: Backpropagation without storing activations, Adv. Neural Inf. Process. Syst. 30 (2017).

[43]

L. Dinh, D. Krueger, Y. Bengio, NICE: Non-linear independent components estimation, 2015, arXiv:1410.8516.

[44]

D.D. Molinaro, K.L. Scherpereel, E.B. Schonhaut, G. Evangelopoulos, M.K. Shepherd, A.J. Young, Task-agnostic exoskeleton control via biological joint moment estimation, Nature 635 (8038) (2024) 337-344.

AI Summary AI Mindmap
PDF (3827KB)

258

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/