Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (4) : 831-851     https://doi.org/10.1007/s11709-018-0513-3
RESEARCH ARTICLE
Effect of axial load and transverse reinforcements on the seismic performance of reinforced concrete columns
Mounir Ait BELKACEM1,2(), Hakim BECHTOULA1, Nouredine BOURAHLA2, Adel Ait BELKACEM3
1. Department of Earthquake Engineering, National Earthquake Engineering Research Centre (C.G.S), Algiers 16005, Algeria
2. Department of Civil Engineering, LGGC Laboratory, Blida 1-University, Blida 09000, Algeria
3. Department of Civil Engineering, Science & Technology University (USTHB), Algiers 16111, Algeria
Download: PDF(6607 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this research is to assess the seismic performance of reinforced concrete columns under different axial load and transverse reinforcement ratios. These two parameters are very important as for the ductility, strength, stiffness, and energy dissipation capacity for a given reinforced concrete column. Effects of variable axial load ratio and transverse reinforcement ratio on the seismic performance of reinforced concrete columns are thoroughly analyzed. The finite element computer program Seismo-Structure was used to perform the analysis of series of reinforced concrete columns tested by the second author and other researchers. In order to reflect the reality and grasp the actual behavior of the specimens, special attention was paid to select the models for concrete, confined concrete, and steel components. Good agreements were obtained between the experimental and the analytical results either for the lateral force-drift relationships or for the damage progress prediction at different stages of the loading.

Keywords reinforced concrete columns      axial load      transverse reinforcement      ductility     
Corresponding Authors: Mounir Ait BELKACEM   
Online First Date: 02 January 2019    Issue Date: 10 July 2019
 Cite this article:   
Mounir Ait BELKACEM,Hakim BECHTOULA,Nouredine BOURAHLA, et al. Effect of axial load and transverse reinforcements on the seismic performance of reinforced concrete columns[J]. Front. Struct. Civ. Eng., 2019, 13(4): 831-851.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-018-0513-3
http://journal.hep.com.cn/fsce/EN/Y2019/V13/I4/831
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mounir Ait BELKACEM
Hakim BECHTOULA
Nouredine BOURAHLA
Adel Ait BELKACEM
Fig.1  Examples of columns loading test. (a) Cantilever; (b) double ended
specimen fc (MPa) axial load (kN) geometric characteristics
B(mm) H(mm) L(mm) config.
transverse reinf. ratio effect 01 44.0 2112 400 400 1600 DE
02 44.0 2112 400 400 1600 DE
03 41.0 3280 400 400 1600 DE
04 40.0 3200 400 400 1600 DE
05 34.0 1782 350 350 1645 C
06 34.0 1782 350 350 1645 C
axial load ratio effect 03 41.0 3280 400 400 1600 DE
07 39.0 4368 400 400 1600 DE
06 34.0 1782 350 350 1645 C
08 34.0 831 350 350 1645 C
09 25.3 450 400 400 1400 C
10 27.1 675 400 400 1400 C
11 26.8 900 400 400 1400 C
12 37.6 705 250 250 625 C
13 37.6 1410 250 250 625 C
bidirectional 14 37.6 705 250 250 625 C
15 37.6 1410 250 250 625 C
Tab.1  Geometric characteristics and loading of the tested columns
specimen longitudinal reinforcement transverse reinforcement
diameter (mm) total # bars reinf. ratio (Calc.) fyl (Mpa) diameter (mm) fyt (Mpa) axial load ratio vol. trans. reinf. ratio
transverse reinf. ratio effect 01 16.0 12 0.015 446.0 8.00 360.0 / 0.012
02 16.0 12 0.015 446.0 7.00 364.0 / 0.008
03 16.0 12 0.015 474.0 8.00 372.0 / 0.007
04 16.0 12 0.015 474.0 6.00 388.0 / 0.003
05 19.5 8 0.019 455.5 9.53 570.0 / 0.010
06 19.5 8 0.019 455.5 9.53 570.0 / 0.020
axial load ratio effect 03 16.0 12 0.015 474.0 8.00 372.0 0.50 0.007
07 16.0 12 0.015 474.0 8.00 372.0 0.70 0.007
06 19.5 8 0.019 455.5 9.53 570.0 0.42 0.020
08 19.5 8 0.019 455.5 9.53 570.0 0.20 0.020
09 19.0 12 0.021 497.0 6.35 459.5 0.11 /
10 19.0 12 0.021 497.0 6.35 459.5 0.15 /
11 19.0 12 0.021 497.0 6.35 459.5 0.21 /
12 13.0 12 0.024 461.0 4.00 485.0 0.30 0.005
13 13.0 12 0.024 461.0 4.00 485.0 0.60 0.005
bidirectional 14 13.0 12 0.024 461.0 4.00 485.0 0.30 0.005
15 13.0 12 0.024 461.0 4.00 485.0 0.60 0.005
Tab.2  Reinforcements ratios
Fig.2  Hysteresis curves. (a) Specimen 3 and 7; (b) specimen 6 and 8
Fig.3  Effect of axial load ratio on the lateral load-drift relationships. (a) Specimen 3 and 7; (b) specimen 6 and 8; (c) specimen 9, 10, and 11; (d) specimen 12 and 13; (e) specimen 14 and 15 EW direction; (f) specimen 14 and 15 NS direction
Fig.4  Effect of axial load ratio on the energy dissipation capacity-drift relationships. (a) Specimen 3 and 7; (b) specimen 6 and 8; (c) specimen 9, 10, and 11
Fig.5  Effect of axial load ratio on the equivalent viscous damping factor-drift relationships. (a) Specimen 3 and 7; (b) specimen 6 and 8; (c) specimen 9, 10, and 11
Fig.6  Hysteresis curves. (a) Specimen 3 and 4; (b) specimen 5 and 6
Fig.7  Effect of the transversal reinforcement ratio on the lateral load-drift relationships. (a) Specimen 1 and 2; (b) specimen 3 and 4; (c) specimen 5 and 6
Fig.8  Effect of the transversal reinforcement ratio on the energy dissipation capacity-drift relationships. (a) Specimen 1 and 2; (b) specimen 3 and 4; (c) specimen 5 and 6
Fig.9  Effect of the transversal reinforcement ratio on the equivalent viscous damping factor-drift relationships. (a) Specimen 1 and 2; (b) specimen 3 and 4; (c) specimen 5 and 6
Fig.10  Basic displacement degrees-of-freedom and corresponding element internal forces
Fig.11  The discretisation of a typical reinforced concrete cross-section
Fig.12  Comparison between the experimental and the numerical lateral force-drift envelope curve
Fig.13  Comparison between the experimental and the numerical dissipated energy
Fig.14  Comparison between the experimental and the numerical equivalent viscous damping factor
specimen envelope curve at each drift angle
energy dissipation damping factor
Fnum max
(kN)
Fexp max
(kN)
FNum/FExp Num energy (kN·mm) Exp energy (kN·mm) ENum/EExp Num damping (%) Exp damping (%) xNum/xExp
3 −272.1
270.0
−281.5
292.0
0.96
0.92
756 843 0.89 10.90 11.60 0.94
2905 3215 0.90 14.50 15.40 0.94
5123 5626 0.91 15.60 18.30 0.85
7891 8241 0.95 18.40 19.30 0.95
12800 11566 1.10 25.00 26.20 0.95
17848 16795 1.06 30.20 36.60 0.82
average 0.94 0.96 0.90
6 −183.9
184.8
−191.1
186.3
0.96
0.99
1300 1495 0.87 16.80 20.30 0.82
2856 3069 0.93 14.40 16.50 0.87
7798 8415 0.92 20.30 22.60 0.89
13094 12174 1.07 24.40 22.70 1.07
18736 17551 1.06 28.80 27.50 1.04
24834 25254 0.98 34.70 37.40 0.92
average 0.97 0.97 0.93
7 −237.0
280.0
−235.0
295.0
1.01
0.95
386 437 0.88 25.40 20.90 1.21
2401 2618 0.92 22.90 24.20 0.94
4123 4814 0.85 21.80 27.50 0.79
8053 8494 0.95 34.90 43.10 0.80
average 0.98 0.90 0.93
8 −164
166.0
−151.8
164.2
1.08
1.01
900 1058 0.85 16.10 18.80 0.85
1756 1889 0.93 10.50 13.40 0.78
6506 5672 1.14 19.00 17.60 1.07
11920 9559 1.24 24.50 20.60 1.18
14706 13365 1.10 23.80 21.50 1.10
19576 17809 1.09 26.90 23.50 1.14
22779 22695 1.00 27.60 25.60 1.07
29165 27628 1.05 33.20 28.00 1.18
average 1.04 1.05 1.04
9 −255.0
251.0
−238.0
248.0
1.07
1.01
79 68 1.16 6.30 5.80 1.08
327 364 0.89 5.10 6.20 0.82
650 592 1.09 4.30 3.60 1.19
1560 1269 1.23 6.30 5.30 1.18
1350 1666 0.81 4.00 5.30 0.75
3020 2656 1.13 6.60 6.10 1.08
6000 5081 1.18 10.90 9.30 1.17
7500 6988 1.07 11.50 10.70 1.07
12350 10182 1.21 16.70 13.70 1.21
14560 13355 1.09 17.50 16.10 1.08
17342 16296 1.06 18.80 17.70 1.06
19686 19399 1.01 19.00 19.10 0.99
21472 22455 0.95 20.00 20.70 0.96
23667 25545 0.92 21.00 22.00 0.95
26192 28711 0.91 21.20 23.20 0.91
28411 31347 0.90 21.40 24.40 0.87
30130 32644 0.92 30.00 26.70 1.12
average 1.04 1.02 1.03
10 −270.0
274.0
−285.0
261.0
0.94
1.05
60 50 1.20 5.00 4.07 1.22
532 461 1.15 6.50 6.66 0.97
1250 1037 1.20 7.42 6.56 1.13
1450 1213 1.19 5.23 4.37 1.19
1647 1577 1.04 4.57 4.37 1.04
3300 3367 0.98 6.56 6.70 0.97
5620 5500 1.02 8.77 9.04 0.97
9002 8702 1.03 12.49 12.07 1.03
11428 11610 0.98 13.99 14.22 0.98
15890 14596 1.08 17.24 15.84 1.08
20500 18180 1.12 20.07 17.80 1.12
22300 20962 1.06 20.04 18.84 1.06
27860 24685 1.12 23.33 20.67 1.12
31560 29137 1.08 24.57 22.68 1.08
34952 32117 1.08 25.60 23.53 1.08
39640 37220 1.06 27.34 25.67 1.06
42600 39821 1.06 36.05 33.70 1.06
43260 42033 1.02 50.11 44.62 1.12
average 0.99 1.08 1.07
11 −280.0
292.0
−299.0
310.0
0.93
0.94
60 50 1.20 4.01 3.67 1.09
246 263 0.93 3.85 4.51 0.85
879 770 1.14 5.81 4.85 1.19
1450 1293 1.12 5.77 5.51 1.04
1499 1239 1.21 4.24 3.52 1.20
1925 1786 1.07 3.87 3.52 1.09
4562 3680 1.23 7.31 6.60 1.10
8622 7404 1.16 11.65 10.07 1.15
12300 9628 1.27 14.73 12.84 1.14
13262 11823 1.12 14.21 11.85 1.19
16251 15906 1.02 15.97 14.53 1.09
21563 19492 1.10 18.84 16.26 1.15
25264 22792 1.10 20.54 17.70 1.16
29466 27019 1.09 22.38 20.28 1.10
35461 29054 1.22 25.38 20.65 1.22
37289 32231 1.15 25.20 22.03 1.14
42656 35650 1.19 30.81 24.13 1.27
45150 36985 1.22 43.00 37.39 1.15
average 0.93 1.14 1.12
Tab.3  Comparison between the experimental and numerical results: effect of Axial Load
Fig.15  Comparison between the experimental and the numerical lateral force-drift envelope curve
Fig.16  Comparison between the experimental and the numerical dissipated energy
Fig.17  Comparison between the experimental and the numerical equivalent viscous damping factor
specimen envelope curve at each drift angle
energy dissipation damping factor
Fnum max
(kN)
Fexp max
(kN)
FNum/FExp Num energy (kN·mm) Exp energy (kN·mm) ENum/EExp Num damping (%) Exp damping (%) xNum/xExp
1 −270.0
269.0
−247.0
274.0
1.09
0.97
500 765 0.65 8.40 10.72 0.78
3332 3735 0.89 11.53 13.87 0.83
11935 11206 1.06 21.87 23.32 0.93
17088 18232 0.93 24.10 29.75 0.81
26720 29003 0.92 38.00 49.02 0.77
average 1.03 0.89 0.82
2 −268.0
268.2
−266.0
276.9
1.00
0.96
552 653 0.84 9.00 11.73 0.76
2546 3060 0.83 9.91 12.74 0.77
9901 10000 0.99 20.67 23.50 0.87
15320 17841 0.85 24.45 26.72 0.91
average 0.98 0.87 0.82
3 −268.0
268.0
−281.0
292.0
0.95
0.91
702 843 0.83 10.16 11.63 0.87
2750 3215 0.85 13.77 15.41 0.89
5000 5626 0.88 15.39 18.32 0.84
7682 8241 0.93 18.22 19.32 0.94
10500 11566 0.90 20.97 26.23 0.79
14985 16795 0.89 25.97 36.64 0.70
average 0.86 0.88 0.83
4 −265.0
263.0
−286.8
295.0
0.92
0.89
695 863 0.80 11.09 11.93 0.92
2387 2798 0.85 12.76 13.61 0.93
4453 5345 0.83 14.44 17.88 0.80
7000 8396 0.83 17.36 20.99 0.82
average 0.91 0.82 0.86
5 −175.0
179.0
−191.7
194.6
0.91
0.92
1490 1786 0.83 19.25 24.20 0.79
2654 3180 0.83 14.78 16.96 0.87
9699 9493 1.02 32.00 25.98 1.23
14806 13382 1.10 39.00 30.99 1.25
average 0.91 0.94 1.03
6 −185.0
187.0
−191.0
186.0
0.96
1.00
1360 1495 0.90 17.13 20.35 0.84
2824 3069 0.92 14.84 16.47 0.90
8376 8415 0.99 22.98 22.58 1.01
11500 12174 0.94 23.61 22.72 1.03
18256 17551 1.04 32.33 27.49 1.17
25027 25254 0.99 42.07 37.42 1.12
average 0.98 0.96 1.01
Tab.4  Comparison between the experimental and numerical results: effect of the volumetric transversal reinforcement ratio
degree of damage physical appearance simulated damage index
slight localized minor cracking D<0.10
minor light cracking in concrete 0.10<D<0.25
moderate localized spalling of concrete 0.25<D<0.40
severe extensive crashing of concrete
disclosure of buckled reinforcements
0.40<D<0.80
collapse collapsed of column D>0.80
Tab.5  Degree of damage proposed by Park and Ang [39]
specimen experimental results analytical results
crushing
(mm)
long bar buckling
(mm)
damage index (D) classification
1 34.2 68.4 0.85 D>0.8 collapsed of column
2 30.6 44.9 0.83
3 18.5 0.0 0.78 0.4<D<0.8 extensive crashing of concrete
4 18.5 0.0 0.69
7 12.3 0.0 0.64
5 32.9 0.0 0.45
6 32.9 82.3 0.80 D>0.8 collapsed of column
8 32.9 0.0 0.79 0.4<D<0.8 extensive crashing of concrete
9 42.5 0.0 0.78
10 37.0 104.0 0.95 D>0.8 collapsed of column
11 36.0 111.0 0.99
Tab.6  Observed damage and computed damage index
Fig.18  Damage index progression. (a) Specimen 1 and 2; (b) specimen 3 and 4; (c) specimen 5 and 6
Fig.19  Damage index progression. (a) Specimen 3 and 7; (b) specimen 6 and 8; (c) specimen 9, 10, and 11
1 M Sargin, S K Ghosh, V K Handa. Effects of lateral reinforcement upon the strength and deformation properties of concrete. Magazine of Concrete Research, 1971, 23(75–76): 99–110
https://doi.org/10.1680/macr.1971.23.76.99
2 A Azizinamini, W G Corley, L S P Johal. Effects of transverse reinforcement on seismic performance of columns. ACI Structural Journal, 1992, 89(4): 442–450
3 ACI Committee 318. Building Code Requirements for Structural Concrete. Farmington Hills: American Concrete Institute, 1983
4 A C Lynn, J P Moehle, S A Mahin, W T Holmes. Seismic evaluation of existing reinforced concrete building columns. Earthquake Spectra, 1996, 12(4): 715–739
https://doi.org/10.1193/1.1585907
5 S A Skeikh, S S Khoury. Confined concrete columns with stubs. ACI Structural Journal, 1993, 90(4): 414–431
6 ACI Committee 318. Building Code Requirements for Structural Concrete. Farmington Hills: American Concrete Institute, 1989
7 M Saatciolglu, G Ozcebe. Response of reinforced concrete columns to simulated seismic loading. ACI Structural Journal, 1989, 86(1): 3–12
8 N I Wehbe, M S Saiidi, D H Sanders. Seismic performance of rectangular bridge columns with moderate confinement. ACI Structural Journal, 1999, 96(2): 248–259
9 S S E Lam, B Wu, Y L Wong, Z Y Wang, Z Q Liu, C S Li. Drift capacity of rectangular reinforced concrete columns with low lateral confinement. Structural Engineering, 2003, 129(6): 733–742
https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(733)
10 J Xiao, C Zhang. Seismic behavior of RC columns with circular: square and diamond sections. Construction & Building Materials, 2008, 22(5): 801–810
https://doi.org/10.1016/j.conbuildmat.2007.01.010
11 Seismosoft. SeismoStruct v7.0 – A computer program for static and dynamic nonlinear analysis of framed structures. 2014
12 Y L Mo, S J Wang. Seismic behavior of RC columns with various tie configurations. Structural Engineering, 2000, 126(10): 1122–1130
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1122)
13 M Saatcioglu, M Grira. Confinement of reinforced concrete columns with welded reinforcement grids. ACI Structural Journal, 1999, 96(1): 29–39
14 M T Watson, Soesianawati, R Park. Design of Reinforced Concrete Frames of Limited Ductility, Report 89-4. 1989
15 M T Soesianawati, R Park, M J N Priestley. Limited Ductility Design of Reinforced Concrete Columns, Report 86-10. 1986
16 A Shibata, M A Sozen. Substitute-structure method for seismic design in R/C. Journal of the Structural Division, 1976, 102(S1): 1–18
17 H Bechtoula, S Kono, F Watanabe. Experimental and analytical investigation of seismic performance of cantilever reinforced concrete columns under varying transverse and axial loads. Journal of Asian Architecture & Building Engineering, 2005, 4(2): 467–474
https://doi.org/10.3130/jaabe.4.467
18 S Kono, H Bechtoula, M Sakashita, H Tanaka, F Watanabe, M O Eberhard. Damage assessment of reinforced concrete columns under high axial loading. ACI Special Publication, 2006, 237(SP): 165–176
19 A A Correia, F B E Virtuoso. Nonlinear Analysis of Space Frames, Proceedings of the Third European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering. Lisbon, 2006
20 F C Filippou, G L Fenves. Earthquake Engineering - From Engineering Seismology to Performance-Based Engineering. Cambridge: Cambridge University Press, 2004
21 M Fragiadakis, M Papadrakakis. Modeling, analysis and reliability of seismically excited structures: computational issues. Computational Methods, 2008, 5(4): 483–511
https://doi.org/10.1142/S0219876208001674
22 J Hellesland, A Scordelis. Analysis of RC bridge columns under imposed deformations. In: Proceeding of the IABSE Colloquium. Delft, 1981, 545–559
23 A Mari, A Scordelis. Nonlinear Geometric Material and Time Dependent Analysis of Three Dimensional Reinforced and Pre-stressed Concrete Frames. SESM Report 82-12. 1984
24 E Spacone, V Ciampi, F C Filippou. Mixed formulation of nonlinear beam finite element. Computers & Structures, 1996, 58(1): 71–83
https://doi.org/10.1016/0045-7949(95)00103-N
25 A Neuenhofer, F C Filippou. Evaluation of nonlinear frame finite-element models. Structural Engineering, 1997, 123(7): 958–966
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
26 J A T Freitas, J P M Almeida, E M B R Pereira. Non-conventional formulations for the finite element method. Computational Mechanics, 1999, 23(5–6): 488–501
https://doi.org/10.1007/s004660050428
27 B N Alemdar, D W White. Displacement, flexibility, and mixed beam-column finite element formulations for distributed plasticity analysis. Structural Engineering, 2005, 131(12): 1811–1819
https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1811)
28 A Calabrese, J P Almeida, R Pinho. Numerical issues in distributed inelasticity modeling of RC frame elements for seismic analysis. Journal of Earthquake Engineering, 2010, 14(S1): 38–68
https://doi.org/10.1080/13632461003651869
29 V Mpampatsikos, R Nascimbene, L Petrini. A critical review of the RC frame existing building assessment procedure according to Eurocode 8 and Italian seismic code. Journal of Earthquake Engineering, 2008, 12(S1): 52–58
https://doi.org/10.1080/13632460801925020
30 M H M Yassin. Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads. Dissertation for the Doctoral Degree. Berkeley: University of California, 1994
31 M Menegotto, P E Pinto. Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In: International Association for Bridge and Structural Engineering. Zurich: 1973, 15–22
32 F C Filippou, E P Popov, V V Bertero. Effects of Bond Deterioration on Hysteretic Behaviour of Reinforced Concrete Joints. Report EERC 83-19. 1983
33 G Monti, C Nuti, S Santini. Cyrus-cyclic Response of Upgraded Sections. Report 96-2. 1996
34 A Prota, F de Cicco, E Cosenza. Cyclic behavior of smooth steel reinforcing bars: experimental analysis and modeling issues. Journal of Earthquake Engineering, 2009, 13(4): 500–519
https://doi.org/10.1080/13632460902837686
35 P Madas. Advanced modeling of composite frames subjected to earthquake loading. Dissertation for the Doctoral Degree. London: University of London, 1993
36 J B Mander, M J N Priestley, R Park. Theoretical stress-strain model for confined concrete. Structural Engineering, 1988, 114(8): 1804–1826
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
37 J E Martínez-Rueda, A S Elnashai. Confined concrete model under cyclic load. Materials and Structures, 1997, 30(3): 139–147
https://doi.org/10.1007/BF02486385
38 M S Williams, R G Sexsmith. Seismic damage indices for concrete structures: A state-of-the-art review. Earthquake Spectra, 1995, 11(2): 319–349
https://doi.org/10.1193/1.1585817
39 Y J Park, A H S Ang. Mechanistic seismic damage model for reinforced concrete. Structural Engineering, 1985, 111(4): 722–739
https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
Related articles from Frontiers Journals
[1] Mostafa FAKHARIFAR,Ahmad DALVAND,Mohammad K. SHARBATDAR,Genda CHEN,Lesley SNEED. Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved seismic strength and ductility of RC structures[J]. Front. Struct. Civ. Eng., 2016, 10(1): 44-62.
[2] Witarto WITARTO,Liang LU,Rachel Howser ROBERTS,Y. L. MO,Xilin LU. Shear-critical reinforced concrete columns under various loading rates[J]. Front. Struct. Civ. Eng., 2014, 8(4): 362-372.
[3] C FANG, B A IZZUDDIN, A Y ELGHAZOULI, D A NETHERCOT. Modeling of semi-rigid beam-to-column steel joints under extreme loading[J]. Front Struc Civil Eng, 2013, 7(3): 245-263.
[4] SUN Yuedong, XIAO Jianzhuang, ZHOU Deyuan. Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading[J]. Front. Struct. Civ. Eng., 2008, 2(4): 302-308.
[5] ZHANG Guojun, LIU Jianxin, LU Xilin. Displacement-based seismic design of high-strength concrete frame columns[J]. Front. Struct. Civ. Eng., 2008, 2(1): 93-101.
[6] JIA Jinqing, JIANG Rui, XU Shilang, HOU Tong. Dynamic analyses of steel-reinforced super high-strength concrete columns[J]. Front. Struct. Civ. Eng., 2007, 1(2): 240-246.
[7] WANG Yiqun, XU Yidong, ZHAO Yanjing, CHEN Yunxia. Limit of axial force ratio and requirement for stirrups of RC columns with special shape[J]. Front. Struct. Civ. Eng., 2007, 1(2): 176-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed