Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (1) : 135-148
Dynamic in-plane transversal normal stresses in the concrete face of CFRD
Institute of Engineering, National University of Mexico, Mexico City, 04510, Mexico
Download: PDF(3976 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Severe earthquakes can induce damages to Concrete Face Rockfill Dams (CFRDs) such as concrete cracking and joint’s water stops distressing where high in-plane transversal normal stresses develop. Although these damages rarely jeopardize the dam safety, they cause large water reservoir leakages that hinder the dam functioning. This issue can be addressed using well know numerical methods; however, given the wide range of parameters involved, it would seem appropriate to develop a simple yet reliable procedure to get a close understanding how their interaction affects the CFRD’s overall behavior. Accordingly, once the physics of the problem is better understood one can proceed to perform a detailed design of the various components of the dam. To this end an easy-to-use procedure that accounts for the dam height effects, valley narrowness, valley slopes, width of concrete slabs and seismic excitation characteristics was developed. The procedure is the dynamic complement of a method recently developed to evaluate in-plane transversal normal stresses in the concrete face of CFRD’s due to dam reservoir filling [1]. Using these two procedures in a sequential manner, it is possible to define the concrete slab in-plane normal stresses induced by the reservoir filling and the action of orthogonal horizontal seismic excitations acting at the same time upstream-downstream and cross river. Both procedures were developed from a data base generated using nonlinear static and dynamic three-dimensional numerical analyses on the same group of CFRD’s. Then, the results were interpreted with the Buckingham Pi theorem and various relationships were developed. In the above reference, the method to evaluate the concrete face in-plane transversal normal stresses caused by the first reservoir filling was reported. In this paper, the seismic procedure is first developed and then through an example the whole method (dam construction, reservoir filling plus seismic loading) of analysis is assessed.

Keywords CFR dams      dynamic analysis      in-plane normal stresses      concrete face     
Corresponding Authors: Neftalí SARMIENTO-SOLANO   
Online First Date: 06 June 2018    Issue Date: 04 January 2019
 Cite this article:   
Neftalí SARMIENTO-SOLANO,Miguel P. ROMO. Dynamic in-plane transversal normal stresses in the concrete face of CFRD[J]. Front. Struct. Civ. Eng., 2019, 13(1): 135-148.
E-mail this article
E-mail Alert
Articles by authors
Miguel P. ROMO
Fig.1  Geometrical features CFRDs models
Fig.2  Experimental model of the concrete-concrete interface
Fig.3  (a) Concrete-concrete interface numerical model and (b) acceleration-time response of the rigid block to a sinusoidal excitation
Property Rockfill Slab, Plinth
Volumetric weight, g 20 kN/m3 24 kN/m3
Young’s Modulus: E0, Ec 45 MPa 22 MPa
Poisson’s ratio, u 0.33 0.20
Tab.1  Material static properties of the CFRDs
Fig.4  Location of the seismic station of El Infiernillo dam
Fig.5  Computed and measured responses to May 31, 1990 earthquake, (a) at seismic station E (dam crest); (b) vertical array seismic station H.
Material type Model parameters
a b gr lmin lmax K2
Compacted rockfill 0.95 1.05 0.0179 0.034 0.236 100
Tab.2  Values of parameters in Eqs. (4), (5) and (6)
Fig.6  Typical seismic excitation applied at the rigid base model
Fig.7  Three dimensional finite difference model of CFRDs
Fig.8  Variation of transversal stresses in some points of concrete slabs by reservoir filling plus seismic load, a = 0.40
Fig.9  Effect of joint spacing on in-plane maximum dynamic stresses in the concrete face
0.4 0.015864 Sj + 0.839288 0.023742 Sj + 5.240348
0.6 0.013579 Sj + 0.588079 0.023563 Sj + 5.524293
0.8 0.010722 Sj + 0.329766 0.018029 Sj + 6.207784
Tab.3  Parameters A and B for Eq. (9)
Fig.10  Effect of the valley slopes on in-plane maximum dynamic stresses in the concrete face
Fig.11  (a) Adjustment of trend lines for TV equal to 1.0, 1.5 y 3.0, and (b) curves defined from Eq. (10)
Fig.12  Dynamic in-plane transversal normal stresses in the concrete face to dams with heights, a = 0.4
Fig.13  Distribution of earthquake-induced maximum in-plane transversal stresses in the mid-section of the concrete face (y= 0 m)
Fig.14  Application example: (a) 3D finite difference model and (b) seismic excitation
Fig.15  Distribution of maximum in-plane transversal normal stresses in the mid-section of the concrete face (y= 0 m) caused by seismic loading.
Fig.16  Distribution of maximum in-plane transversal stresses at three elevations of the concrete face caused by seismic loading
1 NSarmiento, M P Romo. In-plane transversal normal stresses in the concrete face of CFRD induced by the first-dam reservoir filling. Frontiers of Structural and Civil Engineering, 2018, 12(1): 81–91
2 JZhang, Z Yang, XGao, ZTong. Lessons from Damages to High Embankment Dams in the May 12, 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, Geotechnical Special Publication, ASCE, 2010; 201: 1–31
3 MWieland, C Houqun. Lessons learnt from the Wenchuan earthquake. International Water Power & Dam Construction, September 2009, p. 36–40
4 PDakoulas. Nonlinear seismic response of tall concrete-faced rockfill dams in narrow canyons. Soil Dynamics and Earthquake Engineering, ASCE, 2012, 34(1): 11–24
5 DZou, B Xu, XKong, HLiu, Y Zhou. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model. Computers and Geotechnics, 2013, 49: 111–122
6 NSarmiento, M P Romo. Efecto de la dirección de la excitación en la respuesta sísmica de la cara de concreto de presas de enrocamiento. IMTA-TC, 2013, IV(2): 91–111 (in spanish)
7 M PRomo. Cuestiones sísmicas de nuevos tipos de presas. Memorias del coloquio conmemorativo: La Ingeniería Geotécnica a 20 años de “El sismo”. Ciudad de México, 2005, p. 159–163. (in spanish).
8 MWieland. Concrete Face Rockfill Dams in Highly Seismic Regions. 1st International Symposium of Rockfill Dams, Chengdu, China, October, 2009.
9 E STaylor. Dimensional analysis for engineers. Clarendon Press, Oxford, 1974, pp 162.
10 Itasca Consulting Group. FLAC3D: Fast Lagrangian Analysis of Continua in 3 Dimensions. Inc., Minneapolis, Minnesota, 2005.
11 P ACundall, R D Hart. Numerical modeling of discontinua. Engr. Comp, 1992, 9(2): 101–113
12 B CMéndez. Investigación experimental de la fricción dinámica en una interfaz madera sobre madera. Tesis de maestría, Universidad Nacional Autónoma de México, 2004, (in spanish)
13 B CMéndez, M PRomo, EBotero. Linearization of rigid body dynamics on frictional interfaces under harmonic loading. Soil Dynamics and Earthquake Engineering, 2012, 32(1): 152–158
14 B CMéndez, EBotero, M PRomo. A new friction law for sliding rigid blocks under cyclic loading. Soil Dynamics and Earthquake Engineering, 2009, 29(5): 874–882
15 JAlberro, G Macedo and FGonzalez. Deformabilidad in situ de los materiales constitutivos de varias presas de tierra y enrocamiento. Informe para la Comisión Federal de Electricidad, Instituto de Ingeniería, Universidad Nacional Autónoma de México. May 1998, (in spanish)
16 AVaradarajan, K G Sharma, K Venkatachalam, A KGupta. Testing and Modeling Two Rockfill Materials. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206–218
17 ZFu, S Chen, CPeng. Modeling Cyclic Behavior of Rockfill Materials in a Framework of Generalized Plasticity. International Journal of Geomechanics, 2014, 14(2): 191–204
18 YXiao, H Liu, WZhang, HLiu, F Yin, YWang. Testing and modeling of rockfill materials: A review. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 415–422
19 N PHonkanadavar, K GSharma. Modeling the triaxial behavior of riverbed and blasted quarried rockfill materials using hardening soil model. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 350–365
20 SChen, Z Fu, KWei, HHan. Seismic responses of high concrete face rockfill dams: A case study. Water Science and Engineering, 2016, 9(3): 195–204
21 M PRomo. Performance of El Infiernillo and La Villita dams including the earthquake of March 14, 1979. Ediciones del Sector Eléctrico, 1980, No 15, CFE, Chapters 6 and 7
22 M PRomo , RVillarraga. Theoretical model for the seismic behavior of dams: El Infiernillo. Series del Instituto de Ingeniería, UNAM, 1989, No 518 (in Spanish)
23 M PRomo, R Magaña. Evaluation of the seismic response and safety of El Infiernillo and La Villita dams. Internal report, Instituto de Ingeniería, UNAM, 1992, (in Spanish)
24 M PRomo. Model development from measured seismic behavior of earth-rockfill dams. Series Investigación y Desarrollo, Instituto de Ingeniería, UNAM, 2002, SID/630.
25 T WLambe. Predictions in soil engineering. Geotechnique, 1973, 23(2): 151–202
26 M PRomo, N Sarmiento, SMartínez, JMerlos, S RGarcía, RMagaña, S.HernándezAnálisis Sísmico de la Cortina Propuesta por CFE para el Proyecto Hidroeléctrico El Cajón y Diseños Geotécnicos Alternos. Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, noviembre, 2002 (in spanish)
27 M PRomo, N Sarmiento and SMartínez. Análisis sísmico de la cortina (enrocamiento con cara de concreto) de la presa La Parota, Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, 2004 (in spanish)
28 M PRomo, E Botero, BMéndez, SHernández, NSarmiento. Análisis sísmico de la cortina y el vertedor del proyecto Hidroeléctrico La Yesca. Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, julio, 2006 (in spanish)
29 H BSeed, I M Idriss. Soil moduli and damping factors for dynamic response analyses, Technical Report EERRC-70-10, University of California, Berkeley, 1970
30 M PRomo. Soil-structure interaction in a random seismic environment. PhD Thesis, University of California, Berkeley, 1976
31 M PRomo, J Chen, JLysmer, H BSeed. PLUSH. A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Interaction. Earthquake Engineering Research Center, Report EERC-77/01, University of California, Berkeley, California, 1980
32 N.SarmientoRespuesta sísmica tridimensional de presas de enrocamiento con cara de concreto. Tesis doctoral, Universidad Nacional Autónoma de México, 2011, (in spanish)
33 NVu-Bac, T Lahmer, HKeitel, JZhao, X Zhuang, TRabczuk. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
34 NVu-Bac, T Lahmer, YZhang, XZhuang, TRabczuk. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
35 NVu-Bac, M Silani, TLahmer, XZhuang, TRabczuk. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
36 NVu-Bac, R Rafiee, XZhuang, TLahmer, TRabczuk. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
37 NVu-Bac, T Lahmer, XZhuang, TNguyen-Thoi, TRabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
Related articles from Frontiers Journals
[1] Neftalí SARMIENTO-SOLANO, Miguel P. ROMO. In-plane transversal normal stresses in the concrete face of CFRD induced by the first-dam reservoir filling[J]. Front. Struct. Civ. Eng., 2018, 12(1): 81-91.
[2] Asskar Janalizadeh CHOOBBASTI, Sadegh REZAEI, Farzad FARROKHZAD, Pedram Haidarzaeh AZAR. Evaluation of site response characteristic using nonlinear method (Case study: Babol, Iran)[J]. Front Struc Civil Eng, 2014, 8(1): 69-82.
[3] Fadzli M. NAZRI, Pang Yew KEN. Seismic performance of moment resisting steel frame subjected to earthquake excitations[J]. Front Struc Civil Eng, 2014, 8(1): 19-25.
[4] Zhongguo GUAN, Jianzhong LI, Yan XU, Hao LU. Higher-order mode effects on the seismic performance of tall piers[J]. Front Arch Civil Eng Chin, 2011, 5(4): 496-502.
[5] Babak EBRAHIMIAN. Numerical analysis of nonlinear dynamic behavior of earth dams[J]. Front Arch Civil Eng Chin, 2011, 5(1): 24-40.
[6] Dakuo FENG, Ga ZHANG, Jianmin ZHANG, . Three-dimensional seismic response analysis of a concrete-faced rockfill dam on overburden layers[J]. Front. Struct. Civ. Eng., 2010, 4(2): 258-266.
[7] Martin WIELAND, . Features of seismic hazard in large dam projects and strong motion monitoring of large dams[J]. Front. Struct. Civ. Eng., 2010, 4(1): 56-64.
[8] ZHANG Feng, OKAWA Katsunori, KIMURA Makoto. Centrifuge model test on dynamic behavior of group-pile foundation with inclined piles and its numerical simulation[J]. Front. Struct. Civ. Eng., 2008, 2(3): 233-241.
[9] ZHU Xi, WANG Jianmin. Seismic performance of viaducts with probabilistic method[J]. Front. Struct. Civ. Eng., 2007, 1(3): 267-273.
Full text