Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (4) : 470-479     https://doi.org/10.1007/s11709-017-0440-8
RESEARCH ARTICLE
An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network
P. ZAKIAN()
Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran 14115–397, Iran
Download: PDF(595 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Since a lot of engineering problems are along with uncertain parameters, stochastic methods are of great importance for incorporating random nature of a system property or random nature of a system input. In this study, the stochastic dynamic analysis of soil mass is performed by finite element method in the frequency domain. Two methods are used for stochastic analysis of soil media which are spectral decomposition and Monte Carlo methods. Shear modulus of soil is considered as a random field and the seismic excitation is also imposed as a random process. In this research, artificial neural network is proposed and added to Monte Carlo method for sake of reducing computational effort of the random analysis. Then, the effects of the proposed artificial neural network are illustrated on decreasing computational time of Monte Carlo simulations in comparison with standard Monte Carlo and spectral decomposition methods. Numerical verifications are provided to indicate capabilities, accuracy and efficiency of the proposed strategy compared to the other techniques.

Keywords stochastic analysis      random seismic excitation      finite element method      artificial neural network      frequency domain analysis      Monte Carlo simulation     
Corresponding Author(s): P. ZAKIAN   
Online First Date: 25 July 2017    Issue Date: 10 November 2017
 Cite this article:   
P. ZAKIAN. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network[J]. Front. Struct. Civ. Eng., 2017, 11(4): 470-479.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-017-0440-8
http://journal.hep.com.cn/fsce/EN/Y2017/V11/I4/470
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
P. ZAKIAN
Fig.1  Radial basis function neural network.
Fig.2  Spectral density function of the seismic excitation.
Fig.3  Schematic of the soil Medium.
Fig.4  The shear modulus distribution over soil depth.
Fig.5  Mean spectral density function of soil response with SFEM.
Fig.6  Standard deviation spectral density function of soil response with SFEM.
Fig.7  Mean spectral density function of soil response with MC and MC-ANN procedures.
Fig.8  Standard deviation spectral density function of soil response with MC and MC-ANN procedures
Fig.9  Error of mean of spectral density function of soil response
Fig.10  Error of standard deviation of spectral density function of soil response
Fig.11  Convergence curve of radial basis ANN training.
ProcessSFEM with KL order=20 and PC order=1ANN TrainingMC via ANNMC
Time (sec)1165591584343
Tab.1  Elapsed Time for the three procedures.
aCoefficients of polynomial chaos
bCorrelation length
bBias
cCoefficient of polynomial chaos in compact form
cCentral input vector for ANN
CResponse vector in frequency domain
diag [.]Diagonal terms of a matrix
dEuclidean distance
E[.]Expected value
F0Scale factor
FForce vector in frequency domain
f(s)Radial basis function
GShear modulus of soil
G*Complex shear modulus
HTransfer function
KeElement stiffness matrix: mean part
KeElement stiffness matrix
Kstiffness matrix: mean part
Kstiffness matrix in frequency domain
leLength of an element
mNumber of KL terms
MeElement mass matrix
MMass matrix
mIInfluence vector
NNumber of elements
PNumber of PC terms
RααAutocorrelation function
REpicentral distance
rpolynomial chaos in compact form
sEarthquake duration
SSpectral density function
tlStrong motion duration
TaMean period of the earthquake excitation
uHorizontal displacement
u¨g?max?Maximum ground acceleration
wWeights of the second layer for ANN
xInput vector for ANN
  
φEigenfunction
λEigenvalue
Δu¨gCorrelation factor
δGScale of fluctuation
σGStandard deviation of shear modulus
ρSoil mass density
ψ0Shape function for non-stationary effect
ΓPolynomial chaos
ωSolution to the transcendental equations
ωComponent frequency
ωgFrequency of the ground
ξgDamping ratio of ground
ξRandom variable
θMember of random space
αGFluctuation part of shear modulus
βFrictional damping
.Mean value
  
1 Khaji N, Zakian P. Uncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element method. Mechanics of Advanced Materials and Structures, 2017, 24(12): 1030–1042
https://doi.org/10.1080/15376494.2016.1202359
2 Zakian P, Khaji N, Kaveh A. Graph theoretical methods for efficient stochastic finite element analysis of structures. Computers & Structures, 2017, 178: 29–46
https://doi.org/10.1016/j.compstruc.2016.10.009
3 Salavati M. Approximation of structural damping and input excitation force. Front. Struct. Civ. Eng., 2017, 11(2): 244–254
https://doi.org/10.1007/s11709-016-0371-9
4 Clouteau D, Savin E, Aubry D. Stochastic Simulations in Dynamic Soil–Structure Interaction. Meccanica, 2001, 36(4): 379–399
https://doi.org/10.1023/A:1015057425851
5 Ghiocel D, Ghanem R. Stochastic Finite-Element Analysis of Seismic Soil–Structure Interaction. Journal of Engineering Mechanics, 2002, 128(1): 66–77
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(66)
6 Ho Lee J, Kwan Kim J, Tassoulas J L. Stochastic dynamic analysis of a layered half-space. Soil Dynamics and Earthquake Engineering, 2013, 48(0): 220–233
https://doi.org/10.1016/j.soildyn.2013.01.003
7 Mai C, Konakli K, Sudret B. Seismic fragility curves for structures using non-parametric representations. Front. Struct. Civ. Eng., 2017, 11(2): 169–186
https://doi.org/10.1007/s11709-017-0385-y
8 Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
9 Rahman M S, Yeh C H. Variability of seismic response of soils using stochastic finite element method. Soil Dynamics and Earthquake Engineering, 1999, 18(3): 229–245
https://doi.org/10.1016/S0267-7261(98)00031-1
10 Yeh C H, Rahman M S. Stochastic finite element methods for the seismic response of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(10): 819–850
https://doi.org/10.1002/(SICI)1096-9853(1998100)22:10<819::AID-NAG943>3.0.CO;2-I
11 Zakian P, Khaji N. A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain. Meccanica, 2016, 51(4): 893–920
https://doi.org/10.1007/s11012-015-0242-9
12 Zakian P, Khaji N. Spectral finite element simulation of seismic wave propagation and fault dislocation in elastic media. Asian Journal of Civil Engineering, 2016, 17(8): 1189–1213 (BHRC)
13 Ioannou I, Douglas J, Rossetto T. Assessing the impact of ground-motion variability and uncertainty on empirical fragility curves. Soil Dynamics and Earthquake Engineering, 2015, 69: 83–92
https://doi.org/10.1016/j.soildyn.2014.10.024
14 Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
https://doi.org/10.1016/j.compositesb.2014.09.008
15 Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
https://doi.org/10.1016/j.compositesb.2013.11.014
16 Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
https://doi.org/10.1016/j.mechmat.2013.07.021
17 Ripley B D. Pattern recognition and neural networks: Cambridge university press, 2007
18 Luo F L, Unbehauen R. Applied neural networks for signal processing: Cambridge University Press, 1998
19 Gholizadeh S, Samavati O A. Structural optimization by wavelet transforms and neural networks. Applied Mathematical Modelling, 2011, 35(2): 915–929
https://doi.org/10.1016/j.apm.2010.07.046
20 Papadrakakis M, Lagaros N D. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, 2002, 191(32): 3491–3507
https://doi.org/10.1016/S0045-7825(02)00287-6
21 Yagawa G, Okuda H. Neural networks in computational mechanics. Archives of Computational Methods in Engineering, 1996, 3(4): 435–512
https://doi.org/10.1007/BF02818935
22 Lee S C, Han S W. Neural-network-based models for generating artificial earthquakes and response spectra. Computers & Structures, 2002, 80(20–21): 1627–1638
https://doi.org/10.1016/S0045-7949(02)00112-8
23 Bani–Hani K, Ghaboussi J, Schneider S P. Experimental study of identification and control of structures using neural network. Part 1: Identification. Earthquake Engineering & Structural Dynamics, 1999, 28(9): 995–1018
https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<995::AID-EQE851>3.0.CO;2-8
24 Hamdia K M, Lahmer T, Nguyen-Thoi T, Rabczuk T. Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS. Computational Materials Science, 2015, 102: 304–313
https://doi.org/10.1016/j.commatsci.2015.02.045
25 Hurtado J E. Analysis of one-dimensional stochastic finite elements using neural networks. Probabilistic Engineering Mechanics, 2002, 17(1): 35–44
https://doi.org/10.1016/S0266-8920(01)00011-X
26 Papadrakakis M, Papadopoulos V, Lagaros N D. Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, 1996, 136(1–2): 145–163
https://doi.org/10.1016/0045-7825(96)01011-0
27 Ray W C, Penzien J. Dynamics of structures. Computers & Structures Inc, 2003
28 Hou S n. Earthquake simulation models and their applications: School of Engineering, Massachusetts Institute of Technology, 1968
29 Lutes L D, Sarkani S. Random vibrations: analysis of structural and mechanical systems: Butterworth-Heinemann, 2004
30 Ghanem R G, Spanos P D. Stochastic Finite Elements: A Spectral Approach: Dover Publications, 2003
31 Demuth H, Beale M, Works M. MATLAB: Neural Network Toolbox: User's Guide: Math Works, 1992
32 Lowe D, Broomhead D. Multivariable functional interpolation and adaptive networks. Complex Systems, 1988, 2: 321–355
Related articles from Frontiers Journals
[1] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[2] Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE. The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry[J]. Front. Struct. Civ. Eng., 2020, 14(3): 609-622.
[3] Adam HAMROUNI, Daniel DIAS, Badreddine SBARTAI. Soil spatial variability impact on the behavior of a reinforced earth wall[J]. Front. Struct. Civ. Eng., 2020, 14(2): 518-531.
[4] Mohammad Abubakar NAVEED, Zulfiqar ALI, Abdul QADIR, Umar Naveed LATIF, Saad HAMID, Umar SARWAR. Geotechnical forensic investigation of a slope failure on silty clay soil—A case study[J]. Front. Struct. Civ. Eng., 2020, 14(2): 501-517.
[5] Farhoud KALATEH, Farideh HOSSEINEJAD. Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy finite element method[J]. Front. Struct. Civ. Eng., 2020, 14(2): 387-410.
[6] Reza ASHEGHI, Seyed Abbas HOSSEINI. Prediction of bed load sediments using different artificial neural network models[J]. Front. Struct. Civ. Eng., 2020, 14(2): 374-386.
[7] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[8] Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI. Simulation of cohesive crack growth by a variable-node XFEM[J]. Front. Struct. Civ. Eng., 2020, 14(1): 215-228.
[9] Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong Wan HU. Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1379-1392.
[10] Vahid ALIZADEH. Finite element analysis of controlled low strength materials[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1243-1250.
[11] Gui-Rong Liu. The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired solutions[J]. Front. Struct. Civ. Eng., 2019, 13(2): 456-477.
[12] T. VO-DUY, V. HO-HUU, T. NGUYEN-THOI. Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method[J]. Front. Struct. Civ. Eng., 2019, 13(2): 324-336.
[13] Nhan NGUYEN-MINH, Nha TRAN-VAN, Thang BUI-XUAN, Trung NGUYEN-THOI. Static analysis of corrugated panels using homogenization models and a cell-based smoothed mindlin plate element (CS-MIN3)[J]. Front. Struct. Civ. Eng., 2019, 13(2): 251-272.
[14] Ali Reza GHANIZADEH, Hakime ABBASLOU, Amir Tavana AMLASHI, Pourya ALIDOUST. Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine[J]. Front. Struct. Civ. Eng., 2019, 13(1): 215-239.
[15] T. Chandra Sekhara REDDY. Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network[J]. Front. Struct. Civ. Eng., 2018, 12(4): 490-503.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed