Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (3) : 322-328
Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review
Wenjuan SUN1,2,3, Linbing WANG2(), Yaqiong WANG3
1. USTB-Virginia Tech Joint Lab on Multifunctional Materials, National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, China
2. Virginia Tech, Blacksburg, VA 24061, United States
3. Shaanxi Provincial Key Laboratory for Highway Bridge & Tunnel, Chang'an University, Xi'an 710064, China
Download: PDF(124 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Mechanical properties of rock materials are related to textural characteristics. The relationships between mechanical properties and textural characteristics have been extensively investigated for differently types of rocks through experimental tests. Based on the experimental test data, single- and multiple- variant regression analyses are conducted among mechanical properties and textural characteristics. Textural characteristics of rock materials are influenced by the following factors: mineral composition, size, shape, and spatial distribution of mineral grains, porosity, and inherent microcracks. This study focuses on the first two: mineral composition and grain size. ?

This study comprehensively summarizes the regression equations between mechanical properties and mineral content and the regression equations between mechanical properties and grain size. Further research directions are suggested at the end of this study.

Keywords Mechanical properties      rock material      texture      mineral characteristics     
Corresponding Authors: Linbing WANG   
Online First Date: 12 June 2017    Issue Date: 24 August 2017
 Cite this article:   
Wenjuan SUN,Linbing WANG,Yaqiong WANG. Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review[J]. Front. Struct. Civ. Eng., 2017, 11(3): 322-328.
E-mail this article
E-mail Alert
Articles by authors
Wenjuan SUN
Linbing WANG
Yaqiong WANG
regression Equation material Type references
P=100 MP a, σ μ=0.90× ϕ dol+2.07×ϕ mic +269
or?????σ μ=1.07× ϕ dol +2.29 × ϕmic+ 258
carbonate rocks [ 11]
impact??????value=0.36×ϕ fel +27.63,R 2 =0.60 2
impact??????? va lu e=0.50× ϕ mic a+55.13,R2= 0.73 2
abrasion??????value=0.032×ϕ qua +3.07,R 2 =0.64 2
abrasion??????value=0.014×ϕ fel +3.00,R 2 =( 0.52 )2
coarse granite and orthogneiss aggregates [ 15]
norwegian?? ???abrasion????value=0.0245× ϕ pyr norite+ 1.648, R 2= 0.83
norwegian?? ???abrasion????value=0.0138× ϕ pyr diabase +1.042, R 2 =0.73
norwegian?? ???abrasion????value=0.037× ϕ amp +0.303 ,R 2 =0.71
sand, gravel, and hard rocks [ 16]
σc =191.887 × Cplg?+Camf C GrM + 155.341× M fel +836.322 × Mq 147.441 ,R 2 =0.811 2 volcanic rocks [ 17]
Tab.1  Regression equations between mechanical properties and mineral content
linear Regression Equation material Type reference
σ c=121.02×Q FR+115,R 2= 0.79 2
σ c=19.54×Q FR+15,R 2= 0.80 2
granite rocks [ 20]
σ c= 437.67×QFR+384.82,R2=0.54 granite rocks [ 26]
σ c=26.632×Q FR+24.459,R 2=0.3788
σ c= 0.957×Q FR+7.685,R 2=0.039
I pls =51.655×QFR+ 69.464, R2 =0.165
granite rocks [ 25]
Tab.2  Linear regression equations between mechanical properties and quartz to feldspar ratio (QFR)
category regression Equation material Type reference
linear σ c=128.52× Dmean quart z+248,R2=0.81 2
σ c=54.73× Dmean plagi oclas e+204,R2=0.83 2
σ c=21.12× Dmean Kfeldspar+20,R 2= 0.91 2
granitic rocks [ 20]
LA=24.74×Dm ean+5.81, R2 =0.6217
LA=114.23× Dmean hornb lende +7.38 ,R2=0.6377
LA=20.74× Dmean quart z+9.65,R2=0.6396
hybrid rocks [ 14]
inverse square root σ c=32.57×1 Dmea n +147.99, R2=0.9689 Marble [ 30]
σ y=σ0+ kdm
P=200 MP a,
σ d=59.2×1 Dmea n +94.9, R2=0.9857
P=100 MP a,
σ d=27.8×1 Dmea n +111.6, R2=0.9930
P=50 MP a,
σd =12.42 × 1 Dmean +115.8, R 2= 0.9978
P=20 MP a,
σ d=5.2×1 Dmea n +99.4, R2=0.9911
marble [ 31]
logarithm σ c= 1.29×log?( D mean )+5.38,R 2=0.71 granites [ 32]
exponential σ= σc+a( D mean )×[1 e b( Dmean)×P] ,
a( Dmean )=101.95+4.00× Dmean
b( Dmean )=101.981.4×log?( a(Dm ean))
different lithology [ 33]
Tab.3  Regression equations of mechanical properties and mean grain size
equation material Type reference
σ c=104.80×T C55.14 ,R2=0.92 dry rock material [ 8]
σ c=96.40×T C56.48 ,R2=0.91 saturated rock material
σ c=110.01×T C46.12 ,R2=0.62
σindt= 8.75×T C3.32 ,R 2 =0.69
sandstone, limestone, siltstone, granite, diorite [ 42]
σ c= 131.86×TC+86.20 ,R2=0.90
when 0.3 <TC<0.6
fault breccia [ 46]
σ c=106.51×T C+7.46,R2=0.93 sandstone, siltstone, marl, shale [ 44]
σ c=72.37×T C+10.38 ,R2=0.87 limestone
σ c=70.83×T C+12.83 ,R2=0.76 sandstone, siltstone, marl, shale, and limestone, based on grain features
Tab.4  Linear regression equations between unconfined compressive strength and texture coefficient
1 Räisänen M ,  Kupiainen K ,  Tervahattu H . The effect of mineralogy, texture and mechanical properties of anti-skid and asphalt aggregates on urban dust. Bulletin of Engineering Geology and the Environment, 2003, 62(4): 359–368
2 Hou Y, Wang  L, Yue P ,  Pauli T ,  Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
3 HouY, SunW, HuangY, Ayatollahi MR, WangL , ZhangJ. Diffuse Interface Model to Investigate the Asphalt Concrete Cracking Subjected to Shear Loading at Low Temperature.Journal of Cold Regions Engineering, 2016, 31(3): 04016009.
4 United States Geological Survey (USGS). USGS Minerals Information: Crushed Stone. , Retrieved 2014-8-11.
5 Little D, Button  J, Jayawickrama P,  Solaimanian M , and  Hudson B.  Uantify shape, angularity and surface texture of aggregates using image nalaysis and study their effect on performance. FHWA/TX-06/0-1707-4, 2003
6 Liu H, Kou  S, Lindqvist P.-A. ,  Lindqvist J.E. , and  Akesson U . Microscope rock texture characterization and simulation of rock aggregate properties. SGU project 60-1362/2004, 2005
7 Ozturk C A, Nasuf  E, Kahraman S . Estimation of rock strength from quantitative assessment of rock texture. Journal of the South African Institute of Mining and Metallurgy, 2014, 114: 471–480
8 Howarth D F, Rowlands  J C. Development of an index to quantify rock texture for qualitative assessment of intact rock properties. Geotechnical Testing Journal, 1986, 9(4): 169–179
9 SunW, WeiY, WangD, Wang L. Review of Multiscale Characterization Techniques and Multiscale Modeling Methods for Cement Concrete: From Atomistic to Continuum.Multi-Scale Modeling and Characterization of Infrastructure Materials, 2013, 8: 325–341.
10 YusofNQAM, ZabidiH. Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Granitic Rock from Hulu Langat, Selangor.Procedia Chemistry, 2016, 19: 975–980.
11 Hugman R H H ,  Friedman M . Effect of texture and composition on mechanical behaviour of experimentally deformed carbonate rocks. American Association of Petroleum Geologists Bulletin, 1979, 63(9): 1478–1489
12 Brattli B. The influence of geological factors on the mechanical properties of basic igneous rocks used as road surface aggregates. Engineering Geology, 1992, 33(1): 31–44
13 Lundqvist S, Göransson  M. Evaluation and interpretation of microscopic parameters vs. mechanical properties of Precambrian rocks from the Stockholm region, Sweden. Proceedings of the 8th Euroseminar Applied to Building Materials, Athens, 13–20, 2001
14 Räisänen M . Relationships between texture and mechanical properties of hybrid rocks from the Jaala–Iitti complex, southeastern Finland. Engineering Geology, 2004, 74(3-4): 197–211
15 Miskovsky K, Duarte  M K, Kou  S Q, Lindqvist  P A. Influence of the mineralogical composition and textural properties on the quality of coarse aggregates. Journal of Materials Engineering and Performance, 2004, 13(2): 144–150
16 Erichsen E, Ulvik  A, Wolden K ,  Neeb P R . Aggregates in Norway—Properties defining the quality of sand, gravel and hard rock for use as aggregate for building purposes. In Slagstad, T. (ed.) Geology for Society, Geological Survey of Norway, Special Publication, 2008, 11, 37–46.
17 Ündül O. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Engineering Geology, 2016, 210: 10–22
18 Merriam R, Rieke  H H III, Kim  Y C. Tensile strength related to mineralogy and texture of some granitic rocks. Engineering Geology, 1970, 4(2): 155–160
19 Gunsallus K L ,  Kulhawy F H . A comparative evaluation of rock strength measurements. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(5): 233–248
20 Tuğrul A, Zarif  I H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering Geology, 1999, 51(4): 303–317 10.1016/S0013-7952(98)00071-4
21 Bell F G. The physical and mechanical properties of the Fell Sandstones, Northumberland, England. Engineering Geology, 1978, 12: 1–29
22 Fahy M P, Guccione  M J. Estimating the strength of sandstone using petrographic thin section data. Bull. Int. Assoc. Eng. Geol., 1979, 16(4): 467–485
23 Shakoor A, Bonelli  R E. Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstone. Bull. Int. Assoc. Eng. Geol., 1991, XXVIII(1): 55–71
24 Åkesson U, Stigh  J, Lindqvist J E ,  Göransson M . The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy. Engineering Geology, 2003, 68(3–4): 275–288
25 Yusof N Q A M ,  Zabidi H . Correlation of mineralogical and textural characteristics with engineering properties of granitic rock from Hulu Langat, Selangor. Procedia Chemistry, 2016, 19: 975–980
26 Sousa L M O . The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones. Environmental Earth Sciences, 2013, 69(4): 1333–1346
27 Brace W F. “Dependence of fracture strength of rocks on grain size.” Bulletin of Mineral Industries Experiment Station, Mining Engineering Series. Rock Mechanics, 1961, 76: 99–103
28 Mendes F M, Aires-Barros  L, Rodrigues F P . The use of modal analysis in the mechanical characterization of rock masses. In: Proc 1st Int. Cong. Rock Mech. Lisbon, 1966, 1, 217–223.
29 Willard R J, McWilliams  J R. Microstructural techniques in the study of physical properties of rocks. International Journal of Rock Mechanics and Mining Sciences, 1969, 6(1): 1–12
30 Wong R H C ,  Chau K T ,  Wang P. Microcracking and grain size effect in Yuen Long marbles. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 479–485
31 Olsson W A. Grain size dependence of yield stress in marble. Journal of Geophysical Research, 1974, 79(32): 4859–4862
32 Přikryl R. Some microstructural aspects of strength variation in rocks. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 671–682
33 Hareland G, Polston  C E, White  W E. Normalized rock failure envelope as a function of rock grain size. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 715–717
34 Onodera T F, Asoka  K H M. Relationship between texture and mechanical properties of crystalline rocks. Bull Int Assoc Eng Geol, 1980, 22: 173–177
35 French W J, Kermani  S, Mole C F . Petrographic evaluation of aggregate parameters. In: Proceeding of the 8th Euroseminar on microscopy applied to building materials, Athens, 2001, 557–564.
36 Åkesson U, Lindqvist  J E, Göransson  M, Stigh J . Relationship between texture and mechanical properties of granites, central Sweden, by use of image-analysing technique. Bulletin of Engineering Geology and the Environment, 2001, 60(4): 277–284
37 Hatzor Y H, Zur  A, Mimran Y . Microstructure effects on microcracking and brittle failure of dolomites. Tectonophysics, 1997, 281(3–4): 141–161
38 Eberhardt E, Stimpson  B, Stead D . Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mechanics and Rock Engineering, 1999, 32(2): 81–99
39 Irfan T Y, Dearman  W R. Engineering classification and index properties of a weathered granite. Bulletin of the International Association of Engineering and Geology, 1978, 17(1): 79–90
40 Hecht C A, Bönsch  C, Bauch E . Relations of rock structure and composition to petrophysical and geomechanical rock properties: examples from Permocarboniferous red-beds. Rock Mechanics and Rock Engineering, 2005, 38(3): 197–216
41 Howarth D F, Rowlands  J C. Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mechanics and Rock Engineering, 1987, 20(1): 57–85
42 Ersoy A, Waller  M D. Textural characterization of rocks. Engineering Geology, 1995, 39(3–4): 123–136
43 Azzoni A, Bailo  F, Rondena E ,  Zaninetti A . Assessment of texture coefficient for different rock types and correlation with uniaxial compressive strength and rock weathering. Rock Mechanics and Rock Engineering, 1996, 29(1): 39–46
44 Ozturk C A, Nasurf  E, Bilgin N . The assessment of rock cutability, and physical and mechanical rock properties from a texture coefficient. Journal of the South African Institute of Mining and Metallurgy, 2004, 7: 397–403
45 Přikryl R. Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Engineering Geology, 2006, 87(3): 149–162
46 Alber M, Kahraman  S. Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mechanics and Rock Engineering, 2009, 42(1): 117–127
Related articles from Frontiers Journals
[1] Zhong WU, Chris ABADIE. Laboratory and field evaluation of asphalt pavement surface friction resistance[J]. Front. Struct. Civ. Eng., 2018, 12(3): 372-381.
[2] Zhenyu QIAN, Lingjian MENG. Study on micro-texture and skid resistance of aggregate during polishing[J]. Front. Struct. Civ. Eng., 2017, 11(3): 346-352.
[3] Mahdi AREZOUMANDI, Mark EZZELL, Jeffery S VOLZ. A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemically based self-consolidating concrete[J]. Front Struc Civil Eng, 2014, 8(1): 36-45.
[4] Faxing DING, Xiaoyong YING, Linchao ZHOU, Zhiwu YU. Unified calculation method and its application in determining the uniaxial mechanical properties of concrete[J]. Front Arch Civil Eng Chin, 2011, 5(3): 381-393.
Full text