Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2016, Vol. 10 Issue (2) : 131-141
Review Article |
Modern developments related to nanotechnology and nanoengineering of concrete
Konstantin SOBOLEV()
Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee,WI 53201, USA
Download: PDF(1778 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This paper reports on modern developments related to nanotechnology of cement and concrete. Recent advances in instrumentation and design of advanced nano-composite materials is discussed. New technological directions and historical milestones in nanoengineering and nanomodi?cation of cement-based materials are presented. It is concluded that there is a strong potential of nanotechnology to improve the performance of cement-based materials.

Keywords nanotechnology      cement      concrete      nanoparticle      nano-composite      nanomodification      carbon nanotubes      C-S-H gel      photocatalyst     
Corresponding Authors: Konstantin SOBOLEV   
Online First Date: 28 April 2016    Issue Date: 11 May 2016
 Cite this article:   
Konstantin SOBOLEV. Modern developments related to nanotechnology and nanoengineering of concrete[J]. Front. Struct. Civ. Eng., 2016, 10(2): 131-141.
E-mail this article
E-mail Alert
Articles by authors
Konstantin SOBOLEV
Fig.1  The particle size and specific surface area scale related to concrete materials, after [7]
Fig.2  The application of photocatalytic cement-based coatings. (a) parking lot and close-up view of the surface after 3-year service (Phoenix, AZ,USA) and (b) bike lane (Brooklyn, NY,USA)
Fig.3  The scale ranges related to concrete, after [16]
Fig.4  Nanocomponents under the TEM. (a) nanoparticles of SiO2[15] and (b) nanofibers of Al2O3 (courtesy of ANF)
Fig.5  The use of carbon nanostructures: (a) TEM image of functionalized CNTs with “open” tip and (b) mechanism of interaction of functionalized CNTs and cementitious matrix [30]; (c) crack-bridging effect of CNT [28]; (d) the structure of CNF investigated by SEM and TEM [35]
Fig.6  The smart composites: (a) experimental setup used for testing of smart CNF-PVA fiber-reinforced composites, after [35]; (b) compressive test of CNT composite and response of the material to cyclic loads [37]
Fig.7  The TiO2based materials: (a) TiO2 nanoparticles [10]; (b) core-shell composite particles [41]; and c) NO conversion by photocatalytic cement based coating (right), after [10]
1 Bhushan B, ed. Handbook of Nanotechnology. Berlin: Springer, 2004
2 Poole C P, Owens F J. Introduction to Nanotechnology. New York:John Wiley&Sons, 2003
3 Gann D. A Review of Nanotechnology and its Potential Applications for Construction. Sussex SPRU,, 2002.
4 Klabunde K J, ed. Nanoscale Materials in Chemistry. New York:Wiley, 2004, 304
5 Sobolev K, Sanchez F, Raki L, Betts J, Kovler K, Sonebi M, Ferrara L, McDonald D B, Taylor P C, Livingston R A, Shah S P, Basheer M P A, Kurtis K E, Wang K. Bibliography on Application of Nanotechnology and Nanomaterials in Concrete. Skokie: Portland Cement Association, 2008
6 Calderón-Moreno J M, Schehl M, Popa M. Superplastic behavior of zirconia-reinforced alumina nanocomposites from powder alcoxide mixtures. Acta Materialia, 2002, 50(16): 3973–3983
7 Sobolev K, Ferrada-Gutiérrez M. How Nanotechnology Can Change the Concrete World: Part 1. American Ceramic Society Bulletin, 2005, 10: 14–17
8 Dalton A B, Collins S, Muñoz E, Razal J M, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H. Super-tough carbon-nanotube fibres. Nature, 2003, 423(6941): 703
9 Nanotechnology of Concrete: Recent Developments and Future Perspectives. Sobolev K, Shah S P, eds. Michigan: American Concrete Institute, 2008
10 Sanchez F, Sobolev K. Nanotechnology in concrete—A review. Construction & Building Materials, 2010, 24(11): 2060–2071
11 Sobolev K, Sanchez F. Nanoengineered Concrete. In: Encyclopedia of Nanotechnology. Bhushan B. ed. Berlin: Springer, 2015
12 Plassard C, Lesniewska E, Pochard I, Nonat A A. Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscaled. Ultramicroscopy, 2004, 100(3-4): 331–338
13 WatanabeT, KojimaE.US Patent, 6 294 247, 2001
14 Hosseini T, Flores-Vivian I, Sobolev K, Kouklin N. Concrete embedded dye-synthesized photovoltaic solar cell. Nature Scientific Reports, 2013, 3: 2727
15 Sobolev K, Flores I, Hermosillo R, Torres-Martínez L M. Application of nanomaterials in high-performance cement composites. In: The Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Sobolev K, Shah S P, eds. Michigan: American Concrete Institute, 2008, 93–120
16 Flores-Vivian I, Pradoto R G K, Moini M, Kozhukhova M, Potapov V, Sobolev K. The Effect of SiO2 Nanoparticles Derived from Hydrothermal Solutions on the Performance of Portland Cement Based Materials. Materials & Design, 2016
17 Thomas J J, Jennings H M, Chen J J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. Journal of Physical Chemistry C, 2009, 113(11): 4327–4334
18 Collepardi M, Ogoumah-Olagot J J, Skarp U, Troli R. Influence of Amorphous Colloidal Silica on the Properties of Self-Compacting Concretes Proceedings of the International Conference. In: Proceedings of the International Conference in Concrete Constructions.Dundee: University of Dundee, 2002, 473–483
19 Green B H. Development of a High-Density Cementitious Rock-Matching Grout Using Nano-Particles. In: Sobolev K, Shah S P, eds. The Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Denver: American Concrete institute, 2008, 121–131
20 Björnström J, Martinelli A, Matic A, Borjesson L, Panas I. Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chemical Physics Letters, 2004, 392(1-3): 242–248
21 Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 2004, 34(6): 1043–1049
22 Qing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction & Building Materials, 2007, 21(3): 539–545
23 Porro A, Dolado J S, Campillo I, Erkizia E, de Miguel Y, Sáez de Ibarra Y, Ayuela A. Effects of nanosilica additions on cement pastes. In: Applications of nanotechnology in concrete design; London: Thomas Telford, 2005
24 Flores I, Sobolev K, Torres L M, Valdez P L, Zarazua E, Cuellar E L. Performance of Cement Systems with Nano-SiO2 Particles Produced Using Sol-gel Method. In: Proceedings of the TRB 1st International Conference on Nanotechnology in Cement and Concrete , Irvine, California, USA, May5–7, 2010
25 Sobolev K. High performance cement: A solution for next millennium. Materials Technology, 1999, 14(4): 191–193
26 Sanchez F, Zhang L, Ince C. Multi-scale performance and durability of carbon nanofiber/cement composites. In:Bittnar Z, Bartos PJM,Nemecek J,Smilauer V,Zeman J, eds. Nanotechnology in Construction: Proceedings of the NICOM-3, Prague, Czech Republic, 2009, 345–350
27 Shah S P, Konsta-Gdoutos M S, Metaxa Z S, Mondal P. Nanoscale modification of cementitious materials. In:Bittnar Z, Bartos PJM,Nemecek J,Smilauer V,Zeman J, eds. Nanotechnology in Construction: Proceedings of the NICOM-3, Prague, Czech Republic, 2009, 125–130
28 Makar J M, Margeson J, Luh J. Carbon nanotube/cement composites—early results and potential applications. In: Proceedings of 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Vancouver, August 22‒24, 2005; 1–10.
29 Sbia L A, Peyvandi A, Soroushian P, Balachandra A M, Sobolev K. Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles. Construction & Building Materials, 2015, 76: 413–422
30 Petrunin S, Vaganov V, Sobolev K. Cement Composites Reinforced with Functionalized Carbon Nanotubes. In: Proceedings of XXII International Materials Research Congress. Materials Research Society: Cancun, 2013, vol. 1611
31 Peyvandi A, Sbia L A, Soroushian P, Sobolev K. Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Construction & Building Materials, 2013, 48: 265–269
32 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale mechanical and fracturecharacteristics and early-age strain capacity of high performance carbonnanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115
33 Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 2013, 36: 25–32
34 Sanchez F, Ince C. Microstructure and macroscopic properties of hybridcarbon nanofiber/silica fume cement composites. Composites Science and Technology, 2009, 69(7-8): 1310–1318
35 Hoheneder J, Flores-Vivian I, Lin Z, Zilberman P, Sobolev K. The performance of stress-sensing smart fiber reinforced composites in moist and sodium chloride environments. Composites. Part B, Engineering, 2015, 73: 89–95
36 Konsta-Gdoutos M S, Aza C A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cement and Concrete Composites, 2014, 53: 162–169
37 Han B, Yu X, Kwon E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology, 2009, 20(44): 445501
38 Cassar L, Pepe C, Tognon G, Guerrini G L, Amadelli R. White Cement For Architectural Concrete Possessing Photocatalytic Properties. In: Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa,2003
39 Chen J, Poon C. Photocatalytic construction and building materials: fromfundamentals to applications. Building and Environment, 2009, 44(9): 1899–1906
40 Faraldos M, Kropp R, Anderson M A, Sobolev K. Photocatalytic hydrophobic concrete coatings to combat air pollution. Catalysis Today, 2016, 259: 228–236
41 Kamaruddin S, Stephan D. Quartz–titania composites for the photocatalytical modification of construction materials. Cement and Concrete Composites, 2013, 36: 109–115
Related articles from Frontiers Journals
[1] Gudimella RAMAKRISHNA, Sriraman PRIYADHARSHINI. Effect of embedment length of untreated natural fibres on the bond behaviour in cement mortar[J]. Front. Struct. Civ. Eng., 2018, 12(4): 454-460.
[2] Fatiha IGUETOULENE, Youcef BOUAFIA, Mohand Said KACHI. Non linear modeling of three-dimensional reinforced and fiber concrete structures[J]. Front. Struct. Civ. Eng., 2018, 12(4): 439-453.
[3] Guowei MA, Li WANG. A critical review of preparation design and workability measurement of concrete material for largescale 3D printing[J]. Front. Struct. Civ. Eng., 2018, 12(3): 382-400.
[4] Rongrong YIN, Chenchen ZHANG, Qing WU, Baocheng LI, He XIE. Damage on lining concrete in highway tunnels under combined sulfate and chloride attack[J]. Front. Struct. Civ. Eng., 2018, 12(3): 331-340.
[5] Said CHOUCHA, Amar BENYAHIA, Mohamed GHRICI, Mohamed Said MANSOUR. Effect of natural pozzolan content on the properties of engineered cementitious composites as repair material[J]. Front. Struct. Civ. Eng., 2018, 12(3): 261-269.
[6] Lapyote PRASITTISOPIN, Issara SEREEWATTHANAWUT. Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer[J]. Front. Struct. Civ. Eng., 2018, 12(1): 16-25.
[7] Sowmini GOPINATHAN, K B ANAND. Properties of cement grout modified with ultra-fine slag[J]. Front. Struct. Civ. Eng., 2018, 12(1): 58-66.
[8] S.A. GHAHARI, E. GHAFARI, L. ASSI. Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review[J]. Front. Struct. Civ. Eng., 2018, 12(1): 137-147.
[9] Neftalí SARMIENTO-SOLANO, Miguel P. ROMO. In-plane transversal normal stresses in the concrete face of CFRD induced by the first-dam reservoir filling[J]. Front. Struct. Civ. Eng., 2018, 12(1): 81-91.
[10] Ismael FLORES-VIVIAN, Rani G.K PRADOTO, Mohamadreza MOINI, Marina KOZHUKHOVA, Vadim POTAPOV, Konstantin SOBOLEV. The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials[J]. Front. Struct. Civ. Eng., 2017, 11(4): 436-445.
[11] Behnam VAKHSHOURI, Shami NEJADI. Instantaneous deflection of light-weight concrete slabs[J]. Front. Struct. Civ. Eng., 2017, 11(4): 412-423.
[12] Osama Ahmed MOHAMED, Omar Fawwaz NAJM. Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS[J]. Front. Struct. Civ. Eng., 2017, 11(4): 406-411.
[13] Meng GUO, Yiqiu TAN, Xuesong DU, Zhaofeng LV. Study on the cohesion and adhesion of hot-poured crack sealants[J]. Front. Struct. Civ. Eng., 2017, 11(3): 353-359.
[14] Yanhua GUAN, Ying GAO, Renjuan SUN, Moon C. WON, Zhi GE. Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements[J]. Front. Struct. Civ. Eng., 2017, 11(3): 338-345.
[15] Yue HOU, Linbing WANG. Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD method[J]. Front. Struct. Civ. Eng., 2017, 11(3): 270-278.
Full text